出於某些目的,最近又開始研究起了RN,看著教程一步步的學習,在最近卻是碰到了一個問題,那就是父子組件的方法調用的問題。這個問題我百度了很久,JS的ES6語法下,用class建立元件,子元件呼叫父元件方法模擬器不斷報錯。本文主要為大家分享一篇ES6下子元件呼叫父元件的方法。希望能幫助大家。
因為我看的影片是基於es5的語法來實現的程式碼,所以文法有些不同。
es5的語法下,方法的this都是RN已經幫我們處理好了的,所以按照影片中的範例是可以達成效果的,但是es6貌似是要自己寫的。 。
具體的寫法就是在constructor中加入this.xxxxx = this.xxxxx.bind(this);
#或是在子元件綁定的時候就寫this.xxxxx.bind(this ) .
這裡就不多講了,下面上程式碼,以供需要的人參考。
export default class TestPrj extends Component { constructor(props){ super(props); this.timesReset = this.timesReset.bind(this); this.state = {timex:2}; } timesReset(){ this.setState({ timex:0 }); } render() { return( <view> <son></son> //或者<son></son> </view> ); } } class Son extends Component{ constructor(props){ super(props); this.state = {times:this.props.timex}; } componentWillReceiveProps(props){ console.log(this.props); this.setState({ times:props.timex }) } timesReset(){ this.props.timesReset(); } render(){ return( <view> <text> 儿子:虽然你揍了我 {this.state.times} 次,但是我 永 不 屈 服!! </text> <touchablehighlight> <text>爹,再给你儿子一次机会!!</text> </touchablehighlight> </view> ); } }
相關推薦:
以上是子元件呼叫父元件的方法實例的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python中的支持向量机(SupportVectorMachine,SVM)是一个强大的有监督学习算法,可以用来解决分类和回归问题。SVM在处理高维度数据和非线性问题的时候表现出色,被广泛地应用于数据挖掘、图像分类、文本分类、生物信息学等领域。在本文中,我们将介绍在Python中使用SVM进行分类的实例。我们将使用scikit-learn库中的SVM模

随着新一代前端框架的不断涌现,VUE3作为一个快速、灵活、易上手的前端框架备受热爱。接下来,我们就来一起学习VUE3的基础知识,制作一个简单的视频播放器。一、安装VUE3首先,我们需要在本地安装VUE3。打开命令行工具,执行以下命令:npminstallvue@next接着,新建一个HTML文件,引入VUE3:<!doctypehtml>

VAE是一种生成模型,全称是VariationalAutoencoder,中文译作变分自编码器。它是一种无监督的学习算法,可以用来生成新的数据,比如图像、音频、文本等。与普通的自编码器相比,VAE更加灵活和强大,能够生成更加复杂和真实的数据。Python是目前使用最广泛的编程语言之一,也是深度学习的主要工具之一。在Python中,有许多优秀的机器学习和深度

Golang是一门功能强大且高效的编程语言,可以用于开发各种应用程序和服务。在Golang中,指针是一种非常重要的概念,它可以帮助我们更灵活和高效地操作数据。指针转换是指在不同类型之间进行指针操作的过程,本文将通过具体的实例来学习Golang中指针转换的最佳实践。1.基本概念在Golang中,每个变量都有一个地址,地址就是变量在内存中的位置。

随着互联网的普及,验证码已经成为了登录、注册、找回密码等操作的必要流程。在Gin框架中,实现验证码功能也变得异常简单。本文将介绍如何在Gin框架中使用第三方库实现验证码功能,并提供示例代码供读者参考。一、安装依赖库在使用验证码之前,我们需要安装一个第三方库goCaptcha。安装goCaptcha可以使用goget命令:$goget-ugithub

随着互联网的迅速发展,数据已成为了当今信息时代最为重要的资源之一。而网络爬虫作为一种自动化获取和处理网络数据的技术,正越来越受到人们的关注和应用。本文将介绍如何使用PHP开发一个简单的网络爬虫,并实现自动化获取网络数据的功能。一、网络爬虫概述网络爬虫是一种自动化获取和处理网络资源的技术,其主要工作过程是模拟浏览器行为,自动访问指定的URL地址并提取所

生成对抗网络(GAN,GenerativeAdversarialNetworks)是一种深度学习算法,它通过两个神经网络互相竞争的方式来生成新的数据。GAN被广泛用于图像、音频、文字等领域的生成任务。在本文中,我们将使用Python编写一个GAN算法实例,用于生成手写数字图像。数据集准备我们将使用MNIST数据集作为我们的训练数据集。MNIST数据集包含

快速上手Django框架:详细教程和实例引言:Django是一款高效灵活的PythonWeb开发框架,由MTV(Model-Template-View)架构驱动。它拥有简单明了的语法和强大的功能,能够帮助开发者快速构建可靠且易于维护的Web应用程序。本文将详细介绍Django的使用方法,并提供具体实例和代码示例,帮助读者快速上手Django框架。一、安装D


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器