這篇文章主要介紹了numpy數組拼接簡單範例,涉及對numpy數組的介紹,numpy數組的屬性等內容,具有一定借鑒價值,需要的朋友可以參考下。
NumPy數組是一個多維數組對象,稱為ndarray。其由兩部分組成:
·實際的資料
·描述這些資料的元資料
大部分運算僅針對於元數據,而不改變底層實際的數據。
關於NumPy陣列有幾點必需了解的:
·NumPy陣列的下標從0開始。
·同一個NumPy陣列中所有元素的型別必須是相同的。
NumPy陣列屬性
在詳細介紹NumPy陣列之前。先詳細介紹下NumPy數組的基本屬性。 NumPy數組的維數稱為秩(rank),一維數組的秩為1,二維數組的秩為2,以此類推。在NumPy中,每一個線性的陣列稱為是一個軸(axes),秩其實是描述軸的數量。比如說,二維數組相當於兩個一維數組,其中第一個一維數組中每個元素又是一個一維數組。所以一維數組就是NumPy中的軸(axes),第一個軸相當於底層數組,第二個軸是底層數組裡的數組。而軸的數量——秩,就是數組的維數。
NumPy的陣列中比較重要ndarray物件屬性有:
1.ndarray.ndim:陣列的維度(即陣列軸的個數),等於秩。最常見的為二維數組(矩陣)。
2.ndarray.shape:陣列的維度。為一個表示數組在每個維度上大小的整數元組。例如二維數組中,表示數組的“行數”和“列數”。 ndarray.shape傳回一個元組,這個元組的長度就是維度的數目,即ndim屬性。
3.ndarray.size:陣列元素的總個數,等於shape屬性中元組元素的乘積。
4.ndarray.dtype:表示數組中元素類型的對象,可使用標準的Python類型建立或指定dtype。另外也可使用前一篇文章中介紹的NumPy提供的資料類型。
5.ndarray.itemsize:陣列中每個元素的位元組大小。例如,一個元素類型為float64的陣列itemsiz屬性值為8(float64佔用64個bits,每個位元組長度為8,所以64/8,佔用8個位元組),又如,一個元素類型為complex32的數組item屬性為4(32/8)。
6.ndarray.data:包含實際陣列元素的緩衝區,由於一般透過陣列的索引來取得元素,所以通常不需要使用這個屬性。
陣列拼接方法一
想法:先將陣列轉成列表,然後再利用列表的拼接函數append()、extend()等進行拼接處理,最後將清單轉成陣列。
範例1:
>>> import numpy as np >>> a=np.array([1,2,5]) >>> b=np.array([10,12,15]) >>> a_list=list(a) >>> b_list=list(b) >>> a_list.extend(b_list) >>> a_list [1, 2, 5, 10, 12, 15] >>> a=np.array(a_list) >>> a array([ 1, 2, 5, 10, 12, 15])
#此方法只適用於簡單的一維陣列拼接,由於轉換過程很耗時間,對於大量資料的拼接一般不建議使用。
陣列拼接方法二
想法:numpy提供了numpy.append(arr,values,axis=None)函數。對於參數規定,要麼一個數組和一個數值;要麼兩個數組,不能三個以上數組直接append拼接。 append函數傳回的總是一個一維數組。
範例2:
>>> a=np.arange(5) >>> a array([0, 1, 2, 3, 4]) >>> np.append(a,10) array([ 0, 1, 2, 3, 4, 10]) >>> a array([0, 1, 2, 3, 4]) >>> b=np.array([11,22,33]) >>> b array([11, 22, 33]) >>> np.append(a,b) array([ 0, 1, 2, 3, 4, 11, 22, 33]) >>> a array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([[7,8,9],[10,11,12]]) >>> b array([[ 7, 8, 9], [10, 11, 12]]) >>> np.append(a,b) array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
#numpy的陣列沒有動態改變大小的功能,numpy.append()函數每次都會重新分配整個數組,並把原來的數組複製到新數組中。
陣列拼接方法三
想法:numpy提供了numpy.concatenate((a1,a2,...),axis=0 )函數。能夠一次完成多個數組的拼接。其中a1,a2,...是陣列類型的參數
範例3:
>>> a=np.array([1,2,3]) >>> b=np.array([11,22,33]) >>> c=np.array([44,55,66]) >>> np.concatenate((a,b,c),axis=0) # 默认情况下,axis=0可以不写 array([ 1, 2, 3, 11, 22, 33, 44, 55, 66]) #对于一维数组拼接,axis的值不影响最后的结果 >>> a=np.array([[1,2,3],[4,5,6]]) >>> b=np.array([[11,21,31],[7,8,9]]) >>> np.concatenate((a,b),axis=0) array([[ 1, 2, 3], [ 4, 5, 6], [11, 21, 31], [ 7, 8, 9]]) >>> np.concatenate((a,b),axis=1) #axis=1表示对应行的数组进行拼接 array([[ 1, 2, 3, 11, 21, 31], [ 4, 5, 6, 7, 8, 9]])
對numpy. append()和numpy.concatenate()兩個函數的運行時間進行比較
範例4:
##
>>> from time import clock as now >>> a=np.arange(9999) >>> b=np.arange(9999) >>> time1=now() >>> c=np.append(a,b) >>> time2=now() >>> print time2-time1 28.2316728446 >>> a=np.arange(9999) >>> b=np.arange(9999) >>> time1=now() >>> c=np.concatenate((a,b),axis=0) >>> time2=now() >>> print time2-time1 20.3934997107
總結
以上就是本文關於numpy數組拼接簡單範例的全部內容,希望對大家有幫助。有興趣的朋友可以繼續參考本站:相關推薦:
以上是numpy數組拼接簡單範例_python的詳細內容。更多資訊請關注PHP中文網其他相關文章!