這篇文章主要介紹了numpy數組拼接簡單範例,涉及對numpy數組的介紹,numpy數組的屬性等內容,具有一定借鑒價值,需要的朋友可以參考下。
NumPy數組是一個多維數組對象,稱為ndarray。其由兩部分組成:
·實際的資料
·描述這些資料的元資料
大部分運算僅針對於元數據,而不改變底層實際的數據。
關於NumPy陣列有幾點必需了解的:
·NumPy陣列的下標從0開始。
·同一個NumPy陣列中所有元素的型別必須是相同的。
NumPy陣列屬性
在詳細介紹NumPy陣列之前。先詳細介紹下NumPy數組的基本屬性。 NumPy數組的維數稱為秩(rank),一維數組的秩為1,二維數組的秩為2,以此類推。在NumPy中,每一個線性的陣列稱為是一個軸(axes),秩其實是描述軸的數量。比如說,二維數組相當於兩個一維數組,其中第一個一維數組中每個元素又是一個一維數組。所以一維數組就是NumPy中的軸(axes),第一個軸相當於底層數組,第二個軸是底層數組裡的數組。而軸的數量——秩,就是數組的維數。
NumPy的陣列中比較重要ndarray物件屬性有:
1.ndarray.ndim:陣列的維度(即陣列軸的個數),等於秩。最常見的為二維數組(矩陣)。
2.ndarray.shape:陣列的維度。為一個表示數組在每個維度上大小的整數元組。例如二維數組中,表示數組的“行數”和“列數”。 ndarray.shape傳回一個元組,這個元組的長度就是維度的數目,即ndim屬性。
3.ndarray.size:陣列元素的總個數,等於shape屬性中元組元素的乘積。
4.ndarray.dtype:表示數組中元素類型的對象,可使用標準的Python類型建立或指定dtype。另外也可使用前一篇文章中介紹的NumPy提供的資料類型。
5.ndarray.itemsize:陣列中每個元素的位元組大小。例如,一個元素類型為float64的陣列itemsiz屬性值為8(float64佔用64個bits,每個位元組長度為8,所以64/8,佔用8個位元組),又如,一個元素類型為complex32的數組item屬性為4(32/8)。
6.ndarray.data:包含實際陣列元素的緩衝區,由於一般透過陣列的索引來取得元素,所以通常不需要使用這個屬性。
陣列拼接方法一
想法:先將陣列轉成列表,然後再利用列表的拼接函數append()、extend()等進行拼接處理,最後將清單轉成陣列。
範例1:
>>> import numpy as np >>> a=np.array([1,2,5]) >>> b=np.array([10,12,15]) >>> a_list=list(a) >>> b_list=list(b) >>> a_list.extend(b_list) >>> a_list [1, 2, 5, 10, 12, 15] >>> a=np.array(a_list) >>> a array([ 1, 2, 5, 10, 12, 15])
#此方法只適用於簡單的一維陣列拼接,由於轉換過程很耗時間,對於大量資料的拼接一般不建議使用。
陣列拼接方法二
想法:numpy提供了numpy.append(arr,values,axis=None)函數。對於參數規定,要麼一個數組和一個數值;要麼兩個數組,不能三個以上數組直接append拼接。 append函數傳回的總是一個一維數組。
範例2:
>>> a=np.arange(5) >>> a array([0, 1, 2, 3, 4]) >>> np.append(a,10) array([ 0, 1, 2, 3, 4, 10]) >>> a array([0, 1, 2, 3, 4]) >>> b=np.array([11,22,33]) >>> b array([11, 22, 33]) >>> np.append(a,b) array([ 0, 1, 2, 3, 4, 11, 22, 33]) >>> a array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([[7,8,9],[10,11,12]]) >>> b array([[ 7, 8, 9], [10, 11, 12]]) >>> np.append(a,b) array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
#numpy的陣列沒有動態改變大小的功能,numpy.append()函數每次都會重新分配整個數組,並把原來的數組複製到新數組中。
陣列拼接方法三
想法:numpy提供了numpy.concatenate((a1,a2,...),axis=0 )函數。能夠一次完成多個數組的拼接。其中a1,a2,...是陣列類型的參數
範例3:
>>> a=np.array([1,2,3]) >>> b=np.array([11,22,33]) >>> c=np.array([44,55,66]) >>> np.concatenate((a,b,c),axis=0) # 默认情况下,axis=0可以不写 array([ 1, 2, 3, 11, 22, 33, 44, 55, 66]) #对于一维数组拼接,axis的值不影响最后的结果 >>> a=np.array([[1,2,3],[4,5,6]]) >>> b=np.array([[11,21,31],[7,8,9]]) >>> np.concatenate((a,b),axis=0) array([[ 1, 2, 3], [ 4, 5, 6], [11, 21, 31], [ 7, 8, 9]]) >>> np.concatenate((a,b),axis=1) #axis=1表示对应行的数组进行拼接 array([[ 1, 2, 3, 11, 21, 31], [ 4, 5, 6, 7, 8, 9]])
對numpy. append()和numpy.concatenate()兩個函數的運行時間進行比較
範例4:
##
>>> from time import clock as now >>> a=np.arange(9999) >>> b=np.arange(9999) >>> time1=now() >>> c=np.append(a,b) >>> time2=now() >>> print time2-time1 28.2316728446 >>> a=np.arange(9999) >>> b=np.arange(9999) >>> time1=now() >>> c=np.concatenate((a,b),axis=0) >>> time2=now() >>> print time2-time1 20.3934997107
總結
以上就是本文關於numpy數組拼接簡單範例的全部內容,希望對大家有幫助。有興趣的朋友可以繼續參考本站:相關推薦:
以上是numpy數組拼接簡單範例_python的詳細內容。更多資訊請關注PHP中文網其他相關文章!

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,減法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)

列表sandnumpyArraysInpythonHavedIfferentMemoryfootprints:listSaremoreFlexibleButlessMemory-效率,而alenumpyArraySareSareOptimizedFornumericalData.1)listsStorReereReereReereReereFerenceStoObjects,with withOverHeadeBheadaroundAroundaround64byty64-bitsysysysysysysysysyssyssyssyssysssyssys2)

toensurepythonscriptsbehavecorrectlyacrycrosdevelvermations,分期和生產,USETHESTERTATE:1)Environment varriablesForsimplesettings,2)configurationfilesfilesForcomPlexSetups,3)dynamiCofforComplexSetups,dynamiqualloadingForaptaptibality.eachmethodoffersuniquebeneiquebeneqeniquebenefitsandrefitsandrequiresandrequiresandrequiresca

Python列表切片的基本語法是list[start:stop:step]。 1.start是包含的第一個元素索引,2.stop是排除的第一個元素索引,3.step決定元素之間的步長。切片不僅用於提取數據,還可以修改和反轉列表。

ListSoutPerformarRaysin:1)DynamicsizicsizingandFrequentInsertions/刪除,2)儲存的二聚體和3)MemoryFeliceFiceForceforseforsparsedata,butmayhaveslightperformancecostsinclentoperations。

toConvertapythonarraytoalist,usEthelist()constructororageneratorexpression.1)intimpthearraymoduleandcreateanArray.2)USELIST(ARR)或[XFORXINARR] to ConconverTittoalist,請考慮performorefformanceandmemoryfformanceandmemoryfformienceforlargedAtasetset。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

記事本++7.3.1
好用且免費的程式碼編輯器

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

Dreamweaver CS6
視覺化網頁開發工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。