相信大家對Redis中資料過期有點了解,本文主要介紹了Redis中的資料過期策略,文中透過範例程式碼介紹的很詳細,相信對大家的理解和學習具有一定的參考借鑒價值,有需要的朋友可以參考借鑒,希望能幫助大家。
1、Redis中key的過期時間
透過EXPIRE key seconds指令來設定資料的過期時間。返回1表示設定成功,返回0表示key不存在或無法成功設定過期時間。在key上設定了過期時間後key將在指定的秒數後被自動刪除。被指定了過期時間的key在Redis中被稱為是不穩定的。
當key被DEL指令刪除或被SET、GETSET指令重置後與之關聯的過期時間會被清除
127.0.0.1:6379> setex s 20 1 OK 127.0.0.1:6379> ttl s (integer) 17 127.0.0.1:6379> setex s 200 1 OK 127.0.0.1:6379> ttl s (integer) 195 127.0.0.1:6379> setrange s 3 100 (integer) 6 127.0.0.1:6379> ttl s (integer) 152 127.0.0.1:6379> get s "1\x00\x00100" 127.0.0.1:6379> ttl s (integer) 108 127.0.0.1:6379> getset s 200 "1\x00\x00100" 127.0.0.1:6379> get s "200" 127.0.0.1:6379> ttl s (integer) -1
使用PERSIST可以清除過期時間
127.0.0.1:6379> setex s 100 test OK 127.0.0.1:6379> get s "test" 127.0.0.1:6379> ttl s (integer) 94 127.0.0.1:6379> type s string 127.0.0.1:6379> strlen s (integer) 4 127.0.0.1:6379> persist s (integer) 1 127.0.0.1:6379> ttl s (integer) -1 127.0.0.1:6379> get s "test"
使用rename只是改了key值
127.0.0.1:6379> expire s 200 (integer) 1 127.0.0.1:6379> ttl s (integer) 198 127.0.0.1:6379> rename s ss OK 127.0.0.1:6379> ttl ss (integer) 187 127.0.0.1:6379> type ss string 127.0.0.1:6379> get ss "test"
說明:Redis2.6以後expire精度可以控制在0到1毫秒內,key的過期資訊以絕對Unix時間戳記的形式儲存(Redis2.6之後以毫秒等級的精度儲存),所以在多伺服器同步的時候,一定要同步各個伺服器的時間
2、Redis過期鍵刪除策略
Redis key過期的方式有三種:
被動刪除:當讀/寫一個已經過期的key時,會觸發惰性刪除策略,直接刪除掉這個過期key
主動刪除:由於惰性刪除策略無法保證冷資料被及時刪掉,所以Redis會定期主動淘汰一批已過期的key
當目前已用記憶體超過maxmemory限定時,觸發主動清理策略
被動刪除
只有key被操作時(如GET),REDIS才會被動檢查該key是否過期,如果過期則刪除之並且返回NIL。
1、這種刪除策略對CPU是友善的,刪除操作只有在不得不的情況下才會進行,不會其他的expire key上浪費無謂的CPU時間。
2、但是這種策略對記憶體不友好,一個key已經過期,但是在它被操作之前不會被刪除,仍然佔據記憶體空間。如果有大量的過期鍵存在但是又很少被訪問到,那會造成大量的記憶體空間浪費。 expireIfNeeded(redisDb *db, robj *key)函數位於src/db.c。
/*----------------------------------------------------------------------------- * Expires API *----------------------------------------------------------------------------*/ int removeExpire(redisDb *db, robj *key) { /* An expire may only be removed if there is a corresponding entry in the * main dict. Otherwise, the key will never be freed. */ redisAssertWithInfo(NULL,key,dictFind(db->dict,key->ptr) != NULL); return dictDelete(db->expires,key->ptr) == DICT_OK; } void setExpire(redisDb *db, robj *key, long long when) { dictEntry *kde, *de; /* Reuse the sds from the main dict in the expire dict */ kde = dictFind(db->dict,key->ptr); redisAssertWithInfo(NULL,key,kde != NULL); de = dictReplaceRaw(db->expires,dictGetKey(kde)); dictSetSignedIntegerVal(de,when); } /* Return the expire time of the specified key, or -1 if no expire * is associated with this key (i.e. the key is non volatile) */ long long getExpire(redisDb *db, robj *key) { dictEntry *de; /* No expire? return ASAP */ if (dictSize(db->expires) == 0 || (de = dictFind(db->expires,key->ptr)) == NULL) return -1; /* The entry was found in the expire dict, this means it should also * be present in the main dict (safety check). */ redisAssertWithInfo(NULL,key,dictFind(db->dict,key->ptr) != NULL); return dictGetSignedIntegerVal(de); } /* Propagate expires into slaves and the AOF file. * When a key expires in the master, a DEL operation for this key is sent * to all the slaves and the AOF file if enabled. * * This way the key expiry is centralized in one place, and since both * AOF and the master->slave link guarantee operation ordering, everything * will be consistent even if we allow write operations against expiring * keys. */ void propagateExpire(redisDb *db, robj *key) { robj *argv[2]; argv[0] = shared.del; argv[1] = key; incrRefCount(argv[0]); incrRefCount(argv[1]); if (server.aof_state != REDIS_AOF_OFF) feedAppendOnlyFile(server.delCommand,db->id,argv,2); replicationFeedSlaves(server.slaves,db->id,argv,2); decrRefCount(argv[0]); decrRefCount(argv[1]); } int expireIfNeeded(redisDb *db, robj *key) { mstime_t when = getExpire(db,key); mstime_t now; if (when < 0) return 0; /* No expire for this key */ /* Don't expire anything while loading. It will be done later. */ if (server.loading) return 0; /* If we are in the context of a Lua script, we claim that time is * blocked to when the Lua script started. This way a key can expire * only the first time it is accessed and not in the middle of the * script execution, making propagation to slaves / AOF consistent. * See issue #1525 on Github for more information. */ now = server.lua_caller ? server.lua_time_start : mstime(); /* If we are running in the context of a slave, return ASAP: * the slave key expiration is controlled by the master that will * send us synthesized DEL operations for expired keys. * * Still we try to return the right information to the caller, * that is, 0 if we think the key should be still valid, 1 if * we think the key is expired at this time. */ if (server.masterhost != NULL) return now > when; /* Return when this key has not expired */ if (now <= when) return 0; /* Delete the key */ server.stat_expiredkeys++; propagateExpire(db,key); notifyKeyspaceEvent(REDIS_NOTIFY_EXPIRED, "expired",key,db->id); return dbDelete(db,key); } /*----------------------------------------------------------------------------- * Expires Commands *----------------------------------------------------------------------------*/ /* This is the generic command implementation for EXPIRE, PEXPIRE, EXPIREAT * and PEXPIREAT. Because the commad second argument may be relative or absolute * the "basetime" argument is used to signal what the base time is (either 0 * for *AT variants of the command, or the current time for relative expires). * * unit is either UNIT_SECONDS or UNIT_MILLISECONDS, and is only used for * the argv[2] parameter. The basetime is always specified in milliseconds. */ void expireGenericCommand(redisClient *c, long long basetime, int unit) { robj *key = c->argv[1], *param = c->argv[2]; long long when; /* unix time in milliseconds when the key will expire. */ if (getLongLongFromObjectOrReply(c, param, &when, NULL) != REDIS_OK) return; if (unit == UNIT_SECONDS) when *= 1000; when += basetime; /* No key, return zero. */ if (lookupKeyRead(c->db,key) == NULL) { addReply(c,shared.czero); return; } /* EXPIRE with negative TTL, or EXPIREAT with a timestamp into the past * should never be executed as a DEL when load the AOF or in the context * of a slave instance. * * Instead we take the other branch of the IF statement setting an expire * (possibly in the past) and wait for an explicit DEL from the master. */ if (when <= mstime() && !server.loading && !server.masterhost) { robj *aux; redisAssertWithInfo(c,key,dbDelete(c->db,key)); server.dirty++; /* Replicate/AOF this as an explicit DEL. */ aux = createStringObject("DEL",3); rewriteClientCommandVector(c,2,aux,key); decrRefCount(aux); signalModifiedKey(c->db,key); notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"del",key,c->db->id); addReply(c, shared.cone); return; } else { setExpire(c->db,key,when); addReply(c,shared.cone); signalModifiedKey(c->db,key); notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"expire",key,c->db->id); server.dirty++; return; } } void expireCommand(redisClient *c) { expireGenericCommand(c,mstime(),UNIT_SECONDS); } void expireatCommand(redisClient *c) { expireGenericCommand(c,0,UNIT_SECONDS); } void pexpireCommand(redisClient *c) { expireGenericCommand(c,mstime(),UNIT_MILLISECONDS); } void pexpireatCommand(redisClient *c) { expireGenericCommand(c,0,UNIT_MILLISECONDS); } void ttlGenericCommand(redisClient *c, int output_ms) { long long expire, ttl = -1; /* If the key does not exist at all, return -2 */ if (lookupKeyRead(c->db,c->argv[1]) == NULL) { addReplyLongLong(c,-2); return; } /* The key exists. Return -1 if it has no expire, or the actual * TTL value otherwise. */ expire = getExpire(c->db,c->argv[1]); if (expire != -1) { ttl = expire-mstime(); if (ttl < 0) ttl = 0; } if (ttl == -1) { addReplyLongLong(c,-1); } else { addReplyLongLong(c,output_ms ? ttl : ((ttl+500)/1000)); } } void ttlCommand(redisClient *c) { ttlGenericCommand(c, 0); } void pttlCommand(redisClient *c) { ttlGenericCommand(c, 1); } void persistCommand(redisClient *c) { dictEntry *de; de = dictFind(c->db->dict,c->argv[1]->ptr); if (de == NULL) { addReply(c,shared.czero); } else { if (removeExpire(c->db,c->argv[1])) { addReply(c,shared.cone); server.dirty++; } else { addReply(c,shared.czero); } } }
但僅是這樣是不夠的,因為可能存在一些key永遠不會被再次訪問到,這些設定了過期時間的key也是需要在過期後被刪除的,我們甚至可以將這種情況看作是一種內存洩漏----無用的垃圾資料佔用了大量的內存,而伺服器卻不會自己去釋放它們,這對於運行狀態非常依賴內存的Redis伺服器來說,肯定不是一個好訊息
主動刪除
先說一下時間事件,對於持續運作的伺服器來說, 伺服器需要定期對自身的資源和狀態進行必要的檢查和整理, 從而讓伺服器維持在一個健康穩定的狀態, 這類操作被統稱為常規操作(cron job)
在Redis 中, 常規操作由redis.c/serverCron 實現, 它主要執行以下操作
Redis 將serverCron 作為時間事件來運行, 從而確保它每隔一段時間就會自動運行一次, 又因為serverCron 需要在Redis 伺服器運行期間一直定期運行, 所以它是一個循環時間事件: serverCron 會一直定期執行,直到伺服器關閉為止。
在 Redis 2.6 版本中, 程式規定 serverCron 每秒運行 10 次, 平均每 100 毫秒運行一次。 從Redis 2.8 開始, 使用者可以透過修改hz選項來調整serverCron 的每秒執行次數, 具體資訊請參考redis.conf 檔案中關於hz 選項的說明
也叫定時刪除,這裡的「定期」指的是Redis定期觸發的清理策略,由位於src/redis.c的activeExpireCycle(void)函數來完成。
serverCron是由redis的事件框架驅動的定位任務,這個定時任務中會呼叫activeExpireCycle函數,針對每個db在限制的時間REDIS_EXPIRELOOKUPS_TIME_LIMIT內遲可能多的刪除過期key,之所以要限制時間是為了防止過長時間的阻塞影響redis的正常運作。這種主動刪除策略彌補了被動刪除策略在記憶體上的不友善。
因此,Redis會週期性的隨機測試一批設定了過期時間的key並進行處理。測試到的已過期的key將被刪除。
###典型的方式為,Redis每秒做10次如下的步驟:###随机测试100个设置了过期时间的key
删除所有发现的已过期的key
若删除的key超过25个则重复步骤1
这是一个基于概率的简单算法,基本的假设是抽出的样本能够代表整个key空间,redis持续清理过期的数据直至将要过期的key的百分比降到了25%以下。这也意味着在任何给定的时刻已经过期但仍占据着内存空间的key的量最多为每秒的写操作量除以4.
Redis-3.0.0中的默认值是10,代表每秒钟调用10次后台任务。
除了主动淘汰的频率外,Redis对每次淘汰任务执行的最大时长也有一个限定,这样保证了每次主动淘汰不会过多阻塞应用请求,以下是这个限定计算公式:
#define ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC 25 /* CPU max % for keys collection */ ... timelimit = 1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/server.hz/100;
hz调大将会提高Redis主动淘汰的频率,如果你的Redis存储中包含很多冷数据占用内存过大的话,可以考虑将这个值调大,但Redis作者建议这个值不要超过100。我们实际线上将这个值调大到100,观察到CPU会增加2%左右,但对冷数据的内存释放速度确实有明显的提高(通过观察keyspace个数和used_memory大小)。
可以看出timelimit和server.hz是一个倒数的关系,也就是说hz配置越大,timelimit就越小。换句话说是每秒钟期望的主动淘汰频率越高,则每次淘汰最长占用时间就越短。这里每秒钟的最长淘汰占用时间是固定的250ms(1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/100),而淘汰频率和每次淘汰的最长时间是通过hz参数控制的。
从以上的分析看,当redis中的过期key比率没有超过25%之前,提高hz可以明显提高扫描key的最小个数。假设hz为10,则一秒内最少扫描200个key(一秒调用10次*每次最少随机取出20个key),如果hz改为100,则一秒内最少扫描2000个key;另一方面,如果过期key比率超过25%,则扫描key的个数无上限,但是cpu时间每秒钟最多占用250ms。
当REDIS运行在主从模式时,只有主结点才会执行上述这两种过期删除策略,然后把删除操作”del key”同步到从结点。
maxmemory
当前已用内存超过maxmemory限定时,触发主动清理策略
volatile-lru:只对设置了过期时间的key进行LRU(默认值)
allkeys-lru : 删除lru算法的key
volatile-random:随机删除即将过期key
allkeys-random:随机删除
volatile-ttl : 删除即将过期的
noeviction : 永不过期,返回错误当mem_used内存已经超过maxmemory的设定,对于所有的读写请求,都会触发redis.c/freeMemoryIfNeeded(void)函数以清理超出的内存。注意这个清理过程是阻塞的,直到清理出足够的内存空间。所以如果在达到maxmemory并且调用方还在不断写入的情况下,可能会反复触发主动清理策略,导致请求会有一定的延迟。
当mem_used内存已经超过maxmemory的设定,对于所有的读写请求,都会触发redis.c/freeMemoryIfNeeded(void)函数以清理超出的内存。注意这个清理过程是阻塞的,直到清理出足够的内存空间。所以如果在达到maxmemory并且调用方还在不断写入的情况下,可能会反复触发主动清理策略,导致请求会有一定的延迟。
清理时会根据用户配置的maxmemory-policy来做适当的清理(一般是LRU或TTL),这里的LRU或TTL策略并不是针对redis的所有key,而是以配置文件中的maxmemory-samples个key作为样本池进行抽样清理。
maxmemory-samples在redis-3.0.0中的默认配置为5,如果增加,会提高LRU或TTL的精准度,redis作者测试的结果是当这个配置为10时已经非常接近全量LRU的精准度了,并且增加maxmemory-samples会导致在主动清理时消耗更多的CPU时间,建议:
尽量不要触发maxmemory,最好在mem_used内存占用达到maxmemory的一定比例后,需要考虑调大hz以加快淘汰,或者进行集群扩容。
如果能够控制住内存,则可以不用修改maxmemory-samples配置;如果Redis本身就作为LRU cache服务(这种服务一般长时间处于maxmemory状态,由Redis自动做LRU淘汰),可以适当调大maxmemory-samples。
以下是上文中提到的配置参数的说明
# Redis calls an internal function to perform many background tasks, like # closing connections of clients in timeout, purging expired keys that are # never requested, and so forth. # # Not all tasks are performed with the same frequency, but Redis checks for # tasks to perform according to the specified "hz" value. # # By default "hz" is set to 10. Raising the value will use more CPU when # Redis is idle, but at the same time will make Redis more responsive when # there are many keys expiring at the same time, and timeouts may be # handled with more precision. # # The range is between 1 and 500, however a value over 100 is usually not # a good idea. Most users should use the default of 10 and raise this up to # 100 only in environments where very low latency is required. hz 10 # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory # is reached. You can select among five behaviors: # # volatile-lru -> remove the key with an expire set using an LRU algorithm # allkeys-lru -> remove any key according to the LRU algorithm # volatile-random -> remove a random key with an expire set # allkeys-random -> remove a random key, any key # volatile-ttl -> remove the key with the nearest expire time (minor TTL) # noeviction -> don't expire at all, just return an error on write operations # # Note: with any of the above policies, Redis will return an error on write # operations, when there are no suitable keys for eviction. # # At the date of writing these commands are: set setnx setex append # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby # getset mset msetnx exec sort # # The default is: # maxmemory-policy noeviction # LRU and minimal TTL algorithms are not precise algorithms but approximated # algorithms (in order to save memory), so you can tune it for speed or # accuracy. For default Redis will check five keys and pick the one that was # used less recently, you can change the sample size using the following # configuration directive. # # The default of 5 produces good enough results. 10 Approximates very closely # true LRU but costs a bit more CPU. 3 is very fast but not very accurate. # maxmemory-samples 5
Replication link和AOF文件中的过期处理
為了獲得正確的行為而不至於導致一致性問題,當一個key過期時DEL操作將被記錄在AOF檔並傳遞到所有相關的slave。也即過期刪除操作統一在master實例中進行並向下傳遞,而不是各salve各自掌控。這樣一來便不會出現數據不一致的情形。當slave連接到master後並不能立即清理已過期的key(需要等待由master傳遞過來的DEL操作),slave仍需對資料集中的過期狀態進行管理維護以便於在slave被提升為master會能像master一樣獨立的進行過期處理。
相關建議:
以上是詳解Redis中資料過期策略的詳細內容。更多資訊請關注PHP中文網其他相關文章!