搜尋
首頁後端開發php教程PHP如何實現機器學習之樸素貝葉斯演算法

本文主要介紹了PHP實現機器學習之樸素貝葉斯演算法,結合實例形式詳細分析了樸素貝葉斯演算法的概念、原理及php實現技巧,需要的朋友可以參考下,希望能幫助到大家。

本文實例講述了PHP實作機器學習之樸素貝葉斯演算法。分享給大家供大家參考,具體如下:

機器學習已經在我們的生活中變得隨處可見了。例如從你在家的時候溫控器開始工作到智慧型汽車以及我們口袋中的智慧型手機。機器學習看起來已經無所不在並且是一個非常值得探索的領域。但是什麼是機器學習呢?通常來說,機器學習就是讓系統持續的學習並且對新的問題進行預測。從簡單的預測購物商品到複雜的數位助理預測。

在這篇文章我將會使用樸素貝葉斯演算法Clasifier作為一個類別來介紹。這是一個簡單易於實施的演算法,並且可給出滿意的結果。但是這個演算法是需要一點統計的知識去理解的。在文章的最後部分你可以看到一些實例程式碼,甚至自己去嘗試自己做你的機器學習。

開始

那麼,這個Classifier是要用來實現什麼功能呢?其實它主要是用來判斷給定的語句是積極地還是消極的。例如,「Symfony is the best」是一個正面的語句,「No Symfony is bad」是一個負面的語句。所以在給定了一個語句之後,我想讓這個Classifier在我不給定一個新的規則的情況就回傳一個語句類型。

我為Classifier命名了一個相同名稱的類,並且包含一個guess方法。這個方法接受一個語句的輸入,並且會回傳這個語句是正面的還是負面的。這個類別就像下面這樣:

class Classifier
{
 public function guess($statement)
 {}
}

我更喜歡使用枚舉類型的類別而不是字串作為我的回傳值。我將這個枚舉類型的類別命名為Type,並且包含兩個常數:一個POSITIVE,一個NEGATIVE。這兩個常數將會當做guess方法的回傳值。

class Type
{
 const POSITIVE = 'positive';
 const NEGATIVE = 'negative';
}

初始化工作已經完成,接下來就是要寫我們的演算法進行預測了。

樸素貝葉斯

樸素貝葉斯演算法是基於一個訓練集合工作的,根據這個訓練集從而做出相應的預測。這個演算法運用了簡單的統計學以及一點數學去進行結果的計算。例如像下面四個文字組成的訓練集合:

# #Symfony 是最好的#PhpStorm 很棒##Iltar 抱怨很多
##語句 類型
#正
積極
負片
##沒有Symfony 不好 ###消極的##########


如果给定语句是“Symfony is the best”,那么你可以说这个语句是积极地。你平常也会根据之前学习到的相应知识做出对应的决定,朴素贝叶斯算法也是同样的道理:它根据之前的训练集来决定哪一个类型更加相近。

学习

在这个算法正式工作之前,它需要大量的历史信息作为训练集。它需要知道两件事:每一个类型对应的词产生了多少次和每一个语句对应的类型是什么。我们在实施的时候会将这两种信息存储在两个数组当中。一个数组包含每一类型的词语统计,另一个数组包含每一个类型的语句统计。所有的其他信息都可以从这两个数组中聚合。代码就像下面的一样:

function learn($statement, $type)
{
 $words = $this->getWords($statement);
 foreach ($words as $word) {
 if (!isset($this->words[$type][$word])) {
  $this->words[$type][$word] = 0;
 }
 $this->words[$type][$word]++; // 增加类型的词语统计
 }
 $this->documents[$type]++; // 增加类型的语句统计
}

有了这个集合以后,现在这个算法就可以根据历史数据接受预测训练了。

定义

为了解释这个算法是如何工作的,几个定义是必要的。首先,让我们定义一下输入的语句是给定类型中的一个的概率。这个将会表示为P(Type)。它是以已知类型的数据的类型作为分子,还有整个训练集的数据数量作为分母来得出的。一个数据就是整个训练集中的一个。到现在为止,这个方法可以将会命名为totalP,像下面这样:

function totalP($type)
{
 return ($this->documents[$type] + 1) / (array_sum($this->documents) + 1);
}

请注意,在这里分子和分母都加了1。这是为了避免分子和分母都为0的情况。

根据上面的训练集的例子,积极和消极的类型都会得出0.6的概率。每中类型的数据都是2个,一共是4个数据所以就是(2+1)/(4+1)。

第二个要定义的是对于给定的一个词是属于哪个确定类型的概率。这个我们定义成P(word,Type)。首先我们要得到一个词在训练集中给出确定类型出现的次数,然后用这个结果来除以整个给定类型数据的词数。这个方法我们定义为p:

function p($word, $type)
{
 $count = isset($this->words[$type][$word]) ? $this->words[$type][$word] : 0;
 return ($count + 1) / (array_sum($this->words[$type]) + 1);
}

在本次的训练集中,“is”的是积极类型的概率为0.375。这个词在整个积极的数据中的7个词中占了两次,所以结果就是(2+1)/(7+1)。

最后,这个算法应该只关心关键词而忽略其他的因素。一个简单的方法就是将给定的字符串中的单词分离出来:

function getWords($string)
{
 return preg_split('/\s+/', preg_replace('/[^A-Za-z0-9\s]/', '', strtolower($string)));
}

准备工作都做好了,开始真正实施我们的计划吧!

预测

为了预测语句的类型,这个算法应该计算所给定语句的两个类型的概率。像上面一样,我们定义一个P(Type,sentence)。得出概率高的类型将会是Classifier类中算法返回的结果。

为了计算P(Type,sentence),算法当中将用到贝叶斯定理。算法像这样被定义:P(Type,sentence)= P(Type)* P(sentence,Type)/ P(sentence)。这意味着给定语句的类型概率和给定类型语句概率除以语句的概率的结果是相同的。

那么算法在计算每一个相同语句的P(Tyoe,sentence),P(sentence)是保持一样的。这意味着算法就可以省略其他因素,我们只需要关心最高的概率而不是实际的值。计算就像这样:P(Type,sentence) = P(Type)* P(sentence,Type)。

最后,为了计算P(sentence,Type),我们可以为语句中的每个词添加一条链式规则。所以在一条语句中如果有n个词的话,它将会和P(word_1,Type)* P(word_2,Type)* P(word_3,Type)* .....*P(word_n,Type)是一样的。每一个词计算结果的概率使用了我们前面看到的定义。

好了,所有的都说完了,是时候在php中实际操作一下了:

function guess($statement)
{
 $words = $this->getWords($statement); // 得到单词
 $best_likelihood = 0;
 $best_type = null;
 foreach ($this->types as $type) {
 $likelihood = $this->pTotal($type); //计算 P(Type)
 foreach ($words as $word) {
  $likelihood *= $this->p($word, $type); // 计算 P(word, Type)
 }
 if ($likelihood > $best_likelihood) {
  $best_likelihood = $likelihood;
  $best_type = $type;
 }
 }
 return $best_type;
}

这就是所有的工作,现在算法可以预测语句的类型了。你要做的就是让你的算法开始学习:

$classifier = new Classifier();
$classifier->learn('Symfony is the best', Type::POSITIVE);
$classifier->learn('PhpStorm is great', Type::POSITIVE);
$classifier->learn('Iltar complains a lot', Type::NEGATIVE);
$classifier->learn('No Symfony is bad', Type::NEGATIVE);
var_dump($classifier->guess('Symfony is great')); // string(8) "positive"
var_dump($classifier->guess('I complain a lot')); // string(8) "negative"

所有的代码我已经上传到了GIT上,https://github.com/yannickl88/blog-articles/blob/master/src/machine-learning-naive-bayes/Classifier.php

github上完整php代码如下:

 [], Type::NEGATIVE => []];
 private $documents = [Type::POSITIVE => 0, Type::NEGATIVE => 0];
 public function guess($statement)
 {
 $words  = $this->getWords($statement); // get the words
 $best_likelihood = 0;
 $best_type = null;
 foreach ($this->types as $type) {
  $likelihood = $this->pTotal($type); // calculate P(Type)
  foreach ($words as $word) {
  $likelihood *= $this->p($word, $type); // calculate P(word, Type)
  }
  if ($likelihood > $best_likelihood) {
  $best_likelihood = $likelihood;
  $best_type = $type;
  }
 }
 return $best_type;
 }
 public function learn($statement, $type)
 {
 $words = $this->getWords($statement);
 foreach ($words as $word) {
  if (!isset($this->words[$type][$word])) {
  $this->words[$type][$word] = 0;
  }
  $this->words[$type][$word]++; // increment the word count for the type
 }
 $this->documents[$type]++; // increment the document count for the type
 }
 public function p($word, $type)
 {
 $count = 0;
 if (isset($this->words[$type][$word])) {
  $count = $this->words[$type][$word];
 }
 return ($count + 1) / (array_sum($this->words[$type]) + 1);
 }
 public function pTotal($type)
 {
 return ($this->documents[$type] + 1) / (array_sum($this->documents) + 1);
 }
 public function getWords($string)
 {
 return preg_split('/\s+/', preg_replace('/[^A-Za-z0-9\s]/', '', strtolower($string)));
 }
}
$classifier = new Classifier();
$classifier->learn('Symfony is the best', Type::POSITIVE);
$classifier->learn('PhpStorm is great', Type::POSITIVE);
$classifier->learn('Iltar complains a lot', Type::NEGATIVE);
$classifier->learn('No Symfony is bad', Type::NEGATIVE);
var_dump($classifier->guess('Symfony is great')); // string(8) "positive"
var_dump($classifier->guess('I complain a lot')); // string(8) "negative"

相关推荐:

总结Python常用的机器学习库

机器学习算法的随机数据生成方法介绍

用Python从零实现贝叶斯分类器的机器学习的教程

以上是PHP如何實現機器學習之樸素貝葉斯演算法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
php怎么把负数转为正整数php怎么把负数转为正整数Apr 19, 2022 pm 08:59 PM

php把负数转为正整数的方法:1、使用abs()函数将负数转为正数,使用intval()函数对正数取整,转为正整数,语法“intval(abs($number))”;2、利用“~”位运算符将负数取反加一,语法“~$number + 1”。

php怎么实现几秒后执行一个函数php怎么实现几秒后执行一个函数Apr 24, 2022 pm 01:12 PM

实现方法:1、使用“sleep(延迟秒数)”语句,可延迟执行函数若干秒;2、使用“time_nanosleep(延迟秒数,延迟纳秒数)”语句,可延迟执行函数若干秒和纳秒;3、使用“time_sleep_until(time()+7)”语句。

php字符串有没有下标php字符串有没有下标Apr 24, 2022 am 11:49 AM

php字符串有下标。在PHP中,下标不仅可以应用于数组和对象,还可应用于字符串,利用字符串的下标和中括号“[]”可以访问指定索引位置的字符,并对该字符进行读写,语法“字符串名[下标值]”;字符串的下标值(索引值)只能是整数类型,起始值为0。

php怎么除以100保留两位小数php怎么除以100保留两位小数Apr 22, 2022 pm 06:23 PM

php除以100保留两位小数的方法:1、利用“/”运算符进行除法运算,语法“数值 / 100”;2、使用“number_format(除法结果, 2)”或“sprintf("%.2f",除法结果)”语句进行四舍五入的处理值,并保留两位小数。

php怎么读取字符串后几个字符php怎么读取字符串后几个字符Apr 22, 2022 pm 08:31 PM

在php中,可以使用substr()函数来读取字符串后几个字符,只需要将该函数的第二个参数设置为负值,第三个参数省略即可;语法为“substr(字符串,-n)”,表示读取从字符串结尾处向前数第n个字符开始,直到字符串结尾的全部字符。

php怎么根据年月日判断是一年的第几天php怎么根据年月日判断是一年的第几天Apr 22, 2022 pm 05:02 PM

判断方法:1、使用“strtotime("年-月-日")”语句将给定的年月日转换为时间戳格式;2、用“date("z",时间戳)+1”语句计算指定时间戳是一年的第几天。date()返回的天数是从0开始计算的,因此真实天数需要在此基础上加1。

php怎么替换nbsp空格符php怎么替换nbsp空格符Apr 24, 2022 pm 02:55 PM

方法:1、用“str_replace(" ","其他字符",$str)”语句,可将nbsp符替换为其他字符;2、用“preg_replace("/(\s|\&nbsp\;||\xc2\xa0)/","其他字符",$str)”语句。

php怎么查找字符串是第几位php怎么查找字符串是第几位Apr 22, 2022 pm 06:48 PM

查找方法:1、用strpos(),语法“strpos("字符串值","查找子串")+1”;2、用stripos(),语法“strpos("字符串值","查找子串")+1”。因为字符串是从0开始计数的,因此两个函数获取的位置需要进行加1处理。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器