搜尋
首頁web前端js教程JavaScript中關於 v8 排序原始碼的問題

JavaScript中關於 v8 排序原始碼的問題

Oct 24, 2017 am 09:57 AM
javascriptjs問題

JavaScript 專題系列第二十篇,也是最後一篇,解讀v8 排序原始碼

前言

v8 是Chrome 的JavaScript 引擎,其中關於陣列的排序完全採用了JavaScript 實作。

排序所採用的演算法跟數組的長度有關,當數組長度小於等於 10 時,採用插入排序,大於 10 的時候,採用快速排序。 (當然了,這種說法並不嚴謹)。

我們先來看看插入排序和快速排序。

插入排序

原理

將第一個元素視為有序序列,遍歷數組,將之後的元素依次插入這個構建的有序序列中。

圖示

JavaScript中關於 v8 排序原始碼的問題

實作

function insertionSort(arr) {
    for (var i = 1; i < arr.length; i++) {
        var element = arr[i];
        for (var j = i - 1; j >= 0; j--) {
            var tmp = arr[j];
            var order = tmp - element;
            if (order > 0) {
                arr[j + 1] = tmp;
            } else {
                break;
            }
        }
        arr[j + 1] = element;
    }
    return arr;
}

var arr = [6, 5, 4, 3, 2, 1];
console.log(insertionSort(arr));

時間複雜度

時間複雜度是指執行演算法所需的計算工作量,它考察當輸入值大小趨近無窮時的情況,一般情況下,演算法中基本操作重複執行的次數是問題規模n 的某個函數。

最好情況:陣列升序排列,時間複雜度為:O(n)

最壞情況:陣列降序排列,時間複雜度為:O(n²)

穩定性

穩定性,是指相同的元素在排序後是否仍保持相對的位置。

要注意的是對於不穩定的排序演算法,只要舉出一個實例,即可說明它的不穩定性;而對於穩定的排序演算法,必須對演算法進行分析從而得到穩定的特性。

例如 [3, 3, 1],排序後,還是 [3, 3, 1],但其實是第二個 3 在 第一個 3 前,那這就是不穩定的排序演算法。

插入排序是穩定的演算法。

優勢

當陣列是快要排序好的狀態或是問題規模比較小的時候,插入排序效率更高。這也是為什麼 v8 會在陣列長度小於等於 10 的時候採用插入排序。

快速排序

原則

  1. 選擇一個元素作為"基準"

  2. 小於"基準"的元素,都移到"基準"的左邊;大於"基準"的元素,都移到"基準"的右邊。

  3. 對"基準"左邊和右邊的兩個子集,不斷重複第一步和第二步,直到所有子集只剩下一個元素為止。

範例

範例和下面的實作方式來自阮一峰老師的《快速排序(Quicksort)的Javascript實作》

以陣列[ 85, 24, 63, 45, 17, 31, 96, 50] 為例:

第一步,選擇中間的元素45 作為"基準"。 (基準值可以任意選擇,但是選擇中間的值比較容易理解。)

JavaScript中關於 v8 排序原始碼的問題

第二步,依照順序,將每個元素與"基準"進行比較,形成兩個子集,一個"小於45",另一個"大於等於45"。

JavaScript中關於 v8 排序原始碼的問題

第三步,對兩個子集不斷重複第一步和第二步,直到所有子集只剩下一個元素為止。

JavaScript中關於 v8 排序原始碼的問題

實作

var quickSort = function(arr) {
  if (arr.length <= 1) { return arr; }
    // 取数组的中间元素作为基准
  var pivotIndex = Math.floor(arr.length / 2);
  var pivot = arr.splice(pivotIndex, 1)[0];

  var left = [];
  var right = [];

  for (var i = 0; i < arr.length; i++){
    if (arr[i] < pivot) {
      left.push(arr[i]);
    } else {
      right.push(arr[i]);
    }
  }
  return quickSort(left).concat([pivot], quickSort(right));
};

然而這種實作方式需要額外的空間用來儲存左右子集,所以還有一種原地(in-place)排序的實作方式。

圖示

我們來看看原地排序的實作圖示:

JavaScript中關於 v8 排序原始碼的問題

為了讓大家看明白快速排序的原理,我調慢了執行速度。

在這張示意圖裡,基準的值規則是取最左邊的元素,黃色代表目前的基準,綠色代表小於基準的元素,紫色代表大於基準的元素。

我們會發現,綠色的元素會緊挨在基準的右邊,紫色的元素會被移到後面,然後交換基準和綠色的最後一個元素,此時,基準處於正確的位置,即前面的元素都小於基準值,後面的元素都大於基準值。然後再對前面的和後面的多個元素取基準,做排序。

in-place 實作

function quickSort(arr) {
    // 交换元素
    function swap(arr, a, b) {
        var temp = arr[a];
        arr[a] = arr[b];
        arr[b] = temp;
    }

    function partition(arr, left, right) {
        var pivot = arr[left];
        var storeIndex = left;

        for (var i = left + 1; i <= right; i++) {
            if (arr[i] < pivot) {
                swap(arr, ++storeIndex, i);
            }
        }

        swap(arr, left, storeIndex);

        return storeIndex;
    }

    function sort(arr, left, right) {
        if (left < right) {
            var storeIndex = partition(arr, left, right);
            sort(arr, left, storeIndex - 1);
            sort(arr, storeIndex + 1, right);
        }
    }

    sort(arr, 0, arr.length - 1);

    return arr;
}

console.log(quickSort(6, 7, 3, 4, 1, 5, 9, 2, 8))

穩定性

快速排序是不穩定的排序。如果要證明一個排序是不穩定的,你只用舉出一個實例就行。

所以我們舉一個唄~

就以数组 [1, 2, 3, 3, 4, 5] 为例,因为基准的选择不确定,假如选定了第三个元素(也就是第一个 3) 为基准,所有小于 3 的元素在前面,大于等于 3 的在后面,排序的结果没有问题。可是如果选择了第四个元素(也就是第二个 3 ),小于 3 的在基准前面,大于等于 3 的在基准后面,第一个 3 就会被移动到 第二个 3 后面,所以快速排序是不稳定的排序。

时间复杂度

阮一峰老师的实现中,基准取的是中间元素,而原地排序中基准取最左边的元素。快速排序的关键点就在于基准的选择,选取不同的基准时,会有不同性能表现。

快速排序的时间复杂度最好为 O(nlogn),可是为什么是 nlogn 呢?来一个并不严谨的证明:

在最佳情况下,每一次都平分整个数组。假设数组有 n 个元素,其递归的深度就为 log2n + 1,时间复杂度为 O(n)[(log2n + 1)],因为时间复杂度考察当输入值大小趋近无穷时的情况,所以会忽略低阶项,时间复杂度为:o(nlog2n)。

如果一个程序的运行时间是对数级的,则随着 n 的增大程序会渐渐慢下来。如果底数是 10,lg1000 等于 3,如果 n 为 1000000,lgn 等于 6,仅为之前的两倍。如果底数为 2,log21000 的值约为 10,log21000000 的值约为 19,约为之前的两倍。我们可以发现任意底数的一个对数函数其实都相差一个常数倍而已。所以我们认为 O(logn)已经可以表达所有底数的对数了,所以时间复杂度最后为: O(nlogn)。

而在最差情况下,如果对一个已经排序好的数组,每次选择基准元素时总是选择第一个元素或者最后一个元素,那么每次都会有一个子集是空的,递归的层数将达到 n,最后导致算法的时间复杂度退化为 O(n²)。

这也充分说明了一个基准的选择是多么的重要,而 v8 为了提高性能,就对基准的选择做了很多优化。

v8 基准选择

v8 选择基准的原理是从头和尾之外再选择一个元素,然后三个值排序取中间值。

当数组长度大于 10 但是小于 1000 的时候,取中间位置的元素,实现代码为:

// 基准的下标
// >> 1 相当于除以 2 (忽略余数)
third_index = from + ((to - from) >> 1);

当数组长度大于 1000 的时候,每隔 200 ~ 215 个元素取一个值,然后将这些值进行排序,取中间值的下标,实现的代码为:

// 简单处理过
function GetThirdIndex(a, from, to) {
    var t_array = new Array();

    // & 位运算符
    var increment = 200 + ((to - from) & 15);

    var j = 0;
    from += 1;
    to -= 1;

    for (var i = from; i < to; i += increment) {
        t_array[j] = [i, a[i]];
        j++;
    }
    // 对随机挑选的这些值进行排序
    t_array.sort(function(a, b) {
        return comparefn(a[1], b[1]);
    });
    // 取中间值的下标
    var third_index = t_array[t_array.length >> 1][0];
    return third_index;
}

也许你会好奇 200 + ((to - from) & 15) 是什么意思?

& 表示是按位与,对整数操作数逐位执行布尔与操作。只有两个操作数中相对应的位都是 1,结果中的这一位才是 1。

15 & 127 为例:

15 二进制为: (0000 1111)

127 二进制为:(1111 1111)

按位与结果为:(0000 1111)= 15

所以 15 & 127 的结果为 15

注意 15 的二进制为: 1111,这就意味着任何和 15 按位与的结果都会小于或者等于 15,这才实现了每隔 200 ~ 215 个元素取一个值。

v8 源码

终于到了看源码的时刻!源码地址为:https://github.com/v8/v8/blob/master/src/js/array.js#L758。

function InsertionSort(a, from, to) {
    for (var i = from + 1; i < to; i++) {
        var element = a[i];
        for (var j = i - 1; j >= from; j--) {
            var tmp = a[j];
            var order = comparefn(tmp, element);
            if (order > 0) {
                a[j + 1] = tmp;
            } else {
                break;
            }
        }
        a[j + 1] = element;
    }
};


function QuickSort(a, from, to) {

    var third_index = 0;
    while (true) {
            // Insertion sort is faster for short arrays.
        if (to - from <= 10) {
            InsertionSort(a, from, to);
            return;
        }
        if (to - from > 1000) {
            third_index = GetThirdIndex(a, from, to);
        } else {
            third_index = from + ((to - from) >> 1);
        }
        // Find a pivot as the median of first, last and middle element.
        var v0 = a[from];
        var v1 = a[to - 1];
        var v2 = a[third_index];

        var c01 = comparefn(v0, v1);
        if (c01 > 0) {
            // v1 < v0, so swap them.
            var tmp = v0;
            v0 = v1;
            v1 = tmp;
        } // v0 <= v1.
        var c02 = comparefn(v0, v2);
        if (c02 >= 0) {
            // v2 <= v0 <= v1.
            var tmp = v0;
            v0 = v2;
            v2 = v1;
            v1 = tmp;
        } else {
            // v0 <= v1 && v0 < v2
            var c12 = comparefn(v1, v2);
            if (c12 > 0) {
                // v0 <= v2 < v1
                var tmp = v1;
                v1 = v2;
                v2 = tmp;
            }
        }

        // v0 <= v1 <= v2
        a[from] = v0;
        a[to - 1] = v2;

        var pivot = v1;

        var low_end = from + 1; // Upper bound of elements lower than pivot.
        var high_start = to - 1; // Lower bound of elements greater than pivot.

        a[third_index] = a[low_end];
        a[low_end] = pivot;

        // From low_end to i are elements equal to pivot.
        // From i to high_start are elements that haven't been compared yet.

        partition: for (var i = low_end + 1; i < high_start; i++) {
            var element = a[i];
            var order = comparefn(element, pivot);
            if (order < 0) {
                a[i] = a[low_end];
                a[low_end] = element;
                low_end++;
            } else if (order > 0) {
                do {
                    high_start--;
                    if (high_start == i) break partition;
                    var top_elem = a[high_start];
                    order = comparefn(top_elem, pivot);
                } while (order > 0);

                a[i] = a[high_start];
                a[high_start] = element;
                if (order < 0) {
                    element = a[i];
                    a[i] = a[low_end];
                    a[low_end] = element;
                    low_end++;
                }
            }
        }


        if (to - high_start < low_end - from) {
            QuickSort(a, high_start, to);
            to = low_end;
        } else {
            QuickSort(a, from, low_end);
            from = high_start;
        }
    }
}

var arr = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0];

function comparefn(a, b) {
    return a - b
}

QuickSort(arr, 0, arr.length)
console.log(arr)

我们以数组 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] 为例,分析执行的过程。

1.执行 QuickSort 函数 参数 from 值为 0,参数 to 的值 11。

2.10 (0 + 11 >> 1) = 5,基准值 a[5] 为 5。

3.比较 a[0] a[10] a[5] 的值,然后根据比较结果修改数组,数组此时为 [0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 10]

4.将基准值和数组的第(from + 1)个即数组的第二个元素互换,此时数组为 [0, 5, 8, 7, 6, 9, 4, 3, 2, 1, 10],此时在基准值 5 前面的元素肯定是小于 5 的,因为第三步已经做了一次比较。后面的元素是未排序的。

我们接下来要做的就是把后面的元素中小于 5 的全部移到 5 的前面。

5.然后我们进入 partition 循环,我们依然以这个数组为例,单独抽出来写个 demo 讲一讲

// 假设代码执行到这里,为了方便演示,我们直接设置 low_end 等变量的值
// 可以直接复制到浏览器中查看数组变换效果
var a = [0, 5, 8, 7, 6, 9, 4, 3, 2, 1, 10]
var low_end = 1;
var high_start = 10;
var pivot = 5;

console.log('起始数组为', a)

partition: for (var i = low_end + 1; i < high_start; i++) {

    var element = a[i];
    console.log('循环当前的元素为:', a[i])
    var order = element - pivot;

    if (order < 0) {
        a[i] = a[low_end];
        a[low_end] = element;
        low_end++;
        console.log(a)
    }
    else if (order > 0) {
        do {
            high_start--;
            if (high_start == i) break partition;
            var top_elem = a[high_start];
            order = top_elem - pivot;
        } while (order > 0);

        a[i] = a[high_start];
        a[high_start] = element;

        console.log(a)

        if (order < 0) {
            element = a[i];
            a[i] = a[low_end];
            a[low_end] = element;
            low_end++;
        }
        console.log(a)
    }
}

console.log('最后的结果为', a)
console.log(low_end)
console.log(high_start)

6.此时数组为 [0, 5, 8, 7, 6, 9, 4, 3, 2, 1, 10],循环从第三个元素开始,a[i] 的值为 8,因为大于基准值 5,即 order > 0,开始执行 do while 循环,do while 循环的目的在于倒序查找元素,找到第一个小于基准值的元素,然后让这个元素跟 a[i] 的位置交换。
第一个小于基准值的元素为 1,然后 1 与 8 交换,数组变成  [0, 5, 1, 7, 6, 9, 4, 3, 2, 8, 10]。high_start 的值是为了记录倒序查找到哪里了。

7.此時a[i] 的值變成了1,然後讓1 跟基準值5 交換,數組變成了[0, 1, 5, 7, 6, 9, 4, 3 , 2, 8, 10],low_end 的值加1,low_end 的值是為了記錄基準值的所在位置。

8.循環接著執行,遍歷第四個元素7,跟第6、7 的步驟一致,數組先變成[0, 1, 5, 2, 6, 9, 4, 3, 7, 8, 10],再變成[0, 1, 2, 5, 6, 9, 4, 3, 7, 8, 10]

9.遍歷第五個元素6,跟第6、7 的步驟一致,數組先變成[0, 1, 2, 5, 3, 9, 4, 6, 7, 8, 10],再變成[0, 1, 2, 3, 5, 9, 4, 6, 7, 8, 10]

10.遍歷第六個元素9,跟第6、7 的步驟一致,陣列先變成[0, 1, 2, 3, 5, 4, 9, 6, 7, 8, 10],再變成[0 , 1, 2, 3, 4, 5, 9, 6, 7, 8, 10]

11.在下一次遍歷中,因為i == high_start,意味著正序和倒序的查找終於找到一起了,後面的元素一定都是大於基準值的,此時退出循環

12.遍歷後的結果為[0, 1, 2, 3, 4, 5, 9, 6, 7, 8, 10],在基準值5 前面的元素都小於5,後面的元素都大於5,然後我們分別對兩個子集進行QuickSort

#13.此時low_end 值為5,high_start 值為6,to 的值仍為10,from 的值仍為0,to - high_start 的結果為<code>true,我們對QuickSort(a, 6, 10),即對後面的元素進行排序,但是注意,在新的QuickSort 中,因為from - to 的值小於10,所以這次其實是採用了插入排序。所以準確的說,當陣列長度大於 10 的時候,v8 採用了快速排序和插入排序的混合排序方法。

14.然後to = low_end 即設定to 為5,因為while(true) 的原因,會再執行一遍,to - from 的值為5,執行InsertionSort (a, 0, 5),即對基準值前面的元素執行一次插入排序。

15.因為在 to - from

16.v8 在對陣列進行了一次快速排序後,然後對兩個子集分別進行了插入排序,最終修改數組為正確排序後的數組。

比較

最後來張示意圖感受下插入排序與快速排序:

JavaScript中關於 v8 排序原始碼的問題

##圖片來自於https ://www.toptal.com/developers/sorting-algorithms

專題系列

JavaScript專題系列目錄網址:https://github.com/mqyqingfeng/Blog。

JavaScript專題系列預計寫二十篇左右,主要研究日常開發中一些功能點的實現,例如防抖、節流、去重、類型判斷、拷貝、最值、扁平、柯里、遞歸、亂序、排序等,特點是研(chao)究(xi) underscore 和jQuery 的實作方式。


以上是JavaScript中關於 v8 排序原始碼的問題的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs. JavaScript:開發環境和工具Python vs. JavaScript:開發環境和工具Apr 26, 2025 am 12:09 AM

Python和JavaScript在開發環境上的選擇都很重要。 1)Python的開發環境包括PyCharm、JupyterNotebook和Anaconda,適合數據科學和快速原型開發。 2)JavaScript的開發環境包括Node.js、VSCode和Webpack,適用於前端和後端開發。根據項目需求選擇合適的工具可以提高開發效率和項目成功率。

JavaScript是用C編寫的嗎?檢查證據JavaScript是用C編寫的嗎?檢查證據Apr 25, 2025 am 12:15 AM

是的,JavaScript的引擎核心是用C語言編寫的。 1)C語言提供了高效性能和底層控制,適合JavaScript引擎的開發。 2)以V8引擎為例,其核心用C 編寫,結合了C的效率和麵向對象特性。 3)JavaScript引擎的工作原理包括解析、編譯和執行,C語言在這些過程中發揮關鍵作用。

JavaScript的角色:使網絡交互和動態JavaScript的角色:使網絡交互和動態Apr 24, 2025 am 12:12 AM

JavaScript是現代網站的核心,因為它增強了網頁的交互性和動態性。 1)它允許在不刷新頁面的情況下改變內容,2)通過DOMAPI操作網頁,3)支持複雜的交互效果如動畫和拖放,4)優化性能和最佳實踐提高用戶體驗。

C和JavaScript:連接解釋C和JavaScript:連接解釋Apr 23, 2025 am 12:07 AM

C 和JavaScript通過WebAssembly實現互操作性。 1)C 代碼編譯成WebAssembly模塊,引入到JavaScript環境中,增強計算能力。 2)在遊戲開發中,C 處理物理引擎和圖形渲染,JavaScript負責遊戲邏輯和用戶界面。

從網站到應用程序:JavaScript的不同應用從網站到應用程序:JavaScript的不同應用Apr 22, 2025 am 12:02 AM

JavaScript在網站、移動應用、桌面應用和服務器端編程中均有廣泛應用。 1)在網站開發中,JavaScript與HTML、CSS一起操作DOM,實現動態效果,並支持如jQuery、React等框架。 2)通過ReactNative和Ionic,JavaScript用於開發跨平台移動應用。 3)Electron框架使JavaScript能構建桌面應用。 4)Node.js讓JavaScript在服務器端運行,支持高並發請求。

Python vs. JavaScript:比較用例和應用程序Python vs. JavaScript:比較用例和應用程序Apr 21, 2025 am 12:01 AM

Python更適合數據科學和自動化,JavaScript更適合前端和全棧開發。 1.Python在數據科學和機器學習中表現出色,使用NumPy、Pandas等庫進行數據處理和建模。 2.Python在自動化和腳本編寫方面簡潔高效。 3.JavaScript在前端開發中不可或缺,用於構建動態網頁和單頁面應用。 4.JavaScript通過Node.js在後端開發中發揮作用,支持全棧開發。

C/C在JavaScript口譯員和編譯器中的作用C/C在JavaScript口譯員和編譯器中的作用Apr 20, 2025 am 12:01 AM

C和C 在JavaScript引擎中扮演了至关重要的角色,主要用于实现解释器和JIT编译器。1)C 用于解析JavaScript源码并生成抽象语法树。2)C 负责生成和执行字节码。3)C 实现JIT编译器,在运行时优化和编译热点代码,显著提高JavaScript的执行效率。

JavaScript在行動中:現實世界中的示例和項目JavaScript在行動中:現實世界中的示例和項目Apr 19, 2025 am 12:13 AM

JavaScript在現實世界中的應用包括前端和後端開發。 1)通過構建TODO列表應用展示前端應用,涉及DOM操作和事件處理。 2)通過Node.js和Express構建RESTfulAPI展示後端應用。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具