搜尋
首頁Javajava教程Java中關於最短路徑演算法之Dijkstra演算法的實現

這篇文章主要介紹了java實現最短路徑演算法之Dijkstra演算法, Dijkstra演算法是最短路徑演算法中為人熟知的一種,是單起點全路徑演算法,有興趣的可以了解

#前言

Dijkstra演算法是最短路徑演算法中為人熟知的一種,是單起點全路徑演算法。該演算法被稱為是「貪心演算法」的成功典範。本文接下來將嘗試以最通俗的語言來介紹這個偉大的演算法,並賦予java實作程式碼。

一、知識準備:

1、表示圖的資料結構

用於儲存圖的資料結構有多種,本演算法中筆者使用的是鄰接矩陣。

圖的鄰接矩陣儲存方式是用兩個陣列來表示圖。一個一維數組儲存圖中頂點信息,一個二維數組(鄰接矩陣)儲存圖中的邊或弧的信息。

設圖G有n個頂點,則鄰接矩陣為n*n的方陣,定義為:

##從上面可以看出,無向圖的邊數組是一個對稱矩陣。所謂對稱矩陣就是n階矩陣的元滿足aij = aji。即從矩陣的左上角到右下角的主對角線為軸,右上角的元和左下角相對應的元全都是相等的。

從這個矩陣中,很容易知道圖中的資訊。

(1)要判斷任兩頂點是否有邊無邊就很容易了;

(2)要知道某個頂點的度,其實就是這個頂點vi在鄰接矩陣中第i行或(第i列)的元素總和;

(3)求頂點vi的所有鄰接點就是將矩陣中第i行元素掃描一遍,arc[i][j]為1就是鄰接點;

而有向圖講究入度和出度,頂點vi的入度為1,正好是第i列各數之和。頂點vi的出度為2,即第i行的各數和。

有向圖的定義也類似,故不做贅述。

2、單一起點全路徑

所謂單一起點全路徑,就是指在一個圖中,從一個起點出發,到所有節點的最短路徑。

3、圖論的基本知識(讀者需自行尋找相關資料)

4、互補鬆弛條件

設標量d1,d2,....,dN滿足

dj且P是以i1為起點ik為終點的路,如果

dj = di + aij, 對P的所有邊(i, j)

成立,那麼P是從i1到ik的最短路。其中,滿足上面兩式的稱為最短路問題的互補鬆弛條件。

二、演算法思想

1、令G = (V,E)為一個帶權無向圖。 G中若有兩個相鄰的節點,i和j。 aij(在這及其後面都表示為下標,請注意)為節點i到節點j的權值,在本演算法可以理解為距離。每個節點都有一個值di(節點標記)表示其從起點到它的某條路的距離。

2、演算法初始有一個數組V用於儲存未訪問節點的列表,我們暫稱為候選列表。選定節點1為起始節點。開始時,節點1的d1=0, 其他節點di=無窮大,V為所有節點。

初始化條件後,然後開始迭代演算法,直到V為空集合時停止。具體迭代步驟如下:

將d值最小的節點di從候選清單中移除。 (本例中V的資料結構採用的是優先隊列實現最小值出列,最好使用斐波那契對,在以前文章有過介紹,性能有大幅提示)。對於以該節點為起點的每一條邊,不包括移除V的節點, (i, j)屬於A, 若dj > di + aij(違反鬆弛條件),則令

dj = di + aij    , (如果j已經從V中移除過,說明其最小距離已經計算出,不參與此次計算)

可以看到在演算法的運算工程中,節點的d值是單調不增的

具體演算法圖解如下

#  

#  


三、java程式碼實作


######
public class Vertex implements Comparable<Vertex>{

  /**
   * 节点名称(A,B,C,D)
   */
  private String name;
  
  /**
   * 最短路径长度
   */
  private int path;
  
  /**
   * 节点是否已经出列(是否已经处理完毕)
   */
  private boolean isMarked;
  
  public Vertex(String name){
    this.name = name;
    this.path = Integer.MAX_VALUE; //初始设置为无穷大
    this.setMarked(false);
  }
  
  public Vertex(String name, int path){
    this.name = name;
    this.path = path;
    this.setMarked(false);
  }
  
  @Override
  public int compareTo(Vertex o) {
    return o.path > path?-1:1;
  }
}
#########
public class Graph {

  /*
   * 顶点
   */
  private List<Vertex> vertexs;

  /*
   * 边
   */
  private int[][] edges;

  /*
   * 没有访问的顶点
   */
  private Queue<Vertex> unVisited;

  public Graph(List<Vertex> vertexs, int[][] edges) {
    this.vertexs = vertexs;
    this.edges = edges;
    initUnVisited();
  }
  
  /*
   * 搜索各顶点最短路径
   */
  public void search(){
    while(!unVisited.isEmpty()){
      Vertex vertex = unVisited.element();
      //顶点已经计算出最短路径,设置为"已访问"
       vertex.setMarked(true);  
      //获取所有"未访问"的邻居
        List<Vertex> neighbors = getNeighbors(vertex);  
      //更新邻居的最短路径
      updatesDistance(vertex, neighbors);    
      pop();
    }
    System.out.println("search over");
  }
  
  /*
   * 更新所有邻居的最短路径
   */
  private void updatesDistance(Vertex vertex, List<Vertex> neighbors){
    for(Vertex neighbor: neighbors){
      updateDistance(vertex, neighbor);
    }
  }
  
  /*
   * 更新邻居的最短路径
   */
  private void updateDistance(Vertex vertex, Vertex neighbor){
    int distance = getDistance(vertex, neighbor) + vertex.getPath();
    if(distance < neighbor.getPath()){
      neighbor.setPath(distance);
    }
  }

  /*
   * 初始化未访问顶点集合
   */
  private void initUnVisited() {
    unVisited = new PriorityQueue<Vertex>();
    for (Vertex v : vertexs) {
      unVisited.add(v);
    }
  }

  /*
   * 从未访问顶点集合中删除已找到最短路径的节点
   */
  private void pop() {
    unVisited.poll();
  }

  /*
   * 获取顶点到目标顶点的距离
   */
  private int getDistance(Vertex source, Vertex destination) {
    int sourceIndex = vertexs.indexOf(source);
    int destIndex = vertexs.indexOf(destination);
    return edges[sourceIndex][destIndex];
  }

  /*
   * 获取顶点所有(未访问的)邻居
   */
  private List<Vertex> getNeighbors(Vertex v) {
    List<Vertex> neighbors = new ArrayList<Vertex>();
    int position = vertexs.indexOf(v);
    Vertex neighbor = null;
    int distance;
    for (int i = 0; i < vertexs.size(); i++) {
      if (i == position) {
        //顶点本身,跳过
        continue;
      }
      distance = edges[position][i];  //到所有顶点的距离
      if (distance < Integer.MAX_VALUE) {
        //是邻居(有路径可达)
        neighbor = getVertex(i);
        if (!neighbor.isMarked()) {
          //如果邻居没有访问过,则加入list;
          neighbors.add(neighbor);
        }
      }
    }
    return neighbors;
  }

  /*
   * 根据顶点位置获取顶点
   */
  private Vertex getVertex(int index) {
    return vertexs.get(index);
  }

  /*
   * 打印图
   */
  public void printGraph() {
    int verNums = vertexs.size();
    for (int row = 0; row < verNums; row++) {
      for (int col = 0; col < verNums; col++) {
        if(Integer.MAX_VALUE == edges[row][col]){
          System.out.print("X");
          System.out.print(" ");
          continue;
        }
        System.out.print(edges[row][col]);
        System.out.print(" ");
      }
      System.out.println();
    }
  }
}
#########
public class Test {

  public static void main(String[] args){
    List<Vertex> vertexs = new ArrayList<Vertex>();
    Vertex a = new Vertex("A", 0);
    Vertex b = new Vertex("B");
    Vertex c = new Vertex("C");
    Vertex d = new Vertex("D");
    Vertex e = new Vertex("E");
    Vertex f = new Vertex("F");
    vertexs.add(a);
    vertexs.add(b);
    vertexs.add(c);
    vertexs.add(d);
    vertexs.add(e);
    vertexs.add(f);
    int[][] edges = {
        {Integer.MAX_VALUE,6,3,Integer.MAX_VALUE,Integer.MAX_VALUE,Integer.MAX_VALUE},
        {6,Integer.MAX_VALUE,2,5,Integer.MAX_VALUE,Integer.MAX_VALUE},
        {3,2,Integer.MAX_VALUE,3,4,Integer.MAX_VALUE},
        {Integer.MAX_VALUE,5,3,Integer.MAX_VALUE,5,3},
        {Integer.MAX_VALUE,Integer.MAX_VALUE,4,5,Integer.MAX_VALUE,5},
        {Integer.MAX_VALUE,Integer.MAX_VALUE,Integer.MAX_VALUE,3,5,Integer.MAX_VALUE}
    
    };
    Graph graph = new Graph(vertexs, edges);
    graph.printGraph();
    graph.search();
  }
  
}

以上是Java中關於最短路徑演算法之Dijkstra演算法的實現的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
如何將Maven或Gradle用於高級Java項目管理,構建自動化和依賴性解決方案?如何將Maven或Gradle用於高級Java項目管理,構建自動化和依賴性解決方案?Mar 17, 2025 pm 05:46 PM

本文討論了使用Maven和Gradle進行Java項目管理,構建自動化和依賴性解決方案,以比較其方法和優化策略。

如何使用適當的版本控制和依賴項管理創建和使用自定義Java庫(JAR文件)?如何使用適當的版本控制和依賴項管理創建和使用自定義Java庫(JAR文件)?Mar 17, 2025 pm 05:45 PM

本文使用Maven和Gradle之類的工具討論了具有適當的版本控制和依賴關係管理的自定義Java庫(JAR文件)的創建和使用。

如何使用咖啡因或Guava Cache等庫在Java應用程序中實現多層緩存?如何使用咖啡因或Guava Cache等庫在Java應用程序中實現多層緩存?Mar 17, 2025 pm 05:44 PM

本文討論了使用咖啡因和Guava緩存在Java中實施多層緩存以提高應用程序性能。它涵蓋設置,集成和績效優勢,以及配置和驅逐政策管理最佳PRA

如何將JPA(Java持久性API)用於具有高級功能(例如緩存和懶惰加載)的對象相關映射?如何將JPA(Java持久性API)用於具有高級功能(例如緩存和懶惰加載)的對象相關映射?Mar 17, 2025 pm 05:43 PM

本文討論了使用JPA進行對象相關映射,並具有高級功能,例如緩存和懶惰加載。它涵蓋了設置,實體映射和優化性能的最佳實踐,同時突出潛在的陷阱。[159個字符]

Java的類負載機制如何起作用,包括不同的類載荷及其委託模型?Java的類負載機制如何起作用,包括不同的類載荷及其委託模型?Mar 17, 2025 pm 05:35 PM

Java的類上載涉及使用帶有引導,擴展程序和應用程序類負載器的分層系統加載,鏈接和初始化類。父代授權模型確保首先加載核心類別,從而影響自定義類LOA

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。