HTML5學堂-碼匠:前幾期「演算法之旅」跟大家分享了冒泡排序法和選擇排序法,它們都屬於時間複雜度為O(n^ 2)的「慢」排序。今天跟大家分享多種排序演算法裡使用較廣泛,速度快的排序演算法 —— 快速排序法 [ 平均時間複雜度為O (n logn) ]。
Tips 1:關於「演算法」及「排序」的基礎知識,在先前「選擇排序法」中已詳細講解,可點擊文後的相關文章連結查看,在此不再贅述。
Tips 2:如果沒有特殊說明,本文的快速排序是從小到大的排序。
快速排序是一種分割交換排序,它採用分治的策略,通常稱之為分治法。
基本概念:將原問題分解為若干個規模較小但結構與原問題相似的子問題。遞歸地解決這些子問題,然後將這些子問題的結果組合成原問題的結果。
從序列中任一個數字作為「基準」;
所有小於「基準」的數,都挪到「基準」的左邊;所有大於等於「基準」的數,都移到「基準」的右邊;
在這次移動結束之後,該「基準」就處於兩個序列的中間位置,不再參與後續的排序;
針對「基準」左邊和右邊的兩個子序列,不斷重複上述步驟,直到所有子序列只剩下一個數為止。
現有一個序列為 [8, 4, 7, 2, 0, 3, 1],如下示範快速排序法如何對其進行排序。
先取得基準的索引值,再使用splice數組方法取出基準值。
Tips:在此實例中, 基準的索引值 = parseInt(序列長度 / 2)
Tips:splice方法會改變原始陣列。例如,arr = [1, 2, 3]; 基準索引值為1,基準值為2,原始陣列變成arr = [1, 3];
與「基準」比較大小,並拆分為兩個子序列
小於「基準」的數儲存於leftArr數組當中,大於等於「基準」的數儲存於rightArr數組當中
Tips:當然,也可以將小於等於「基準」的數存於leftArr,大於「基準」的數存於rightArr
由於要遍歷序列,將每一個數與「基準」進行大小比較,所以,需要藉助for語句來實現
定義一個函數,形參用於接收陣列
function quickSort(arr) { };
實作遞歸呼叫遍歷子序列,用concat數組方法組合子序列的結果
遞歸呼叫的過程中,子序列的長度等於1時,則停止遞歸調用,返回目前數組。
最壞情況:每一次選取的「基準」都是序列中最小的數/最大的數,這種情況與冒泡排序法類似(每次只能確定一個數[基準數]的順序),時間複雜度為O(n^2)
最好情況:每一次選取的「基準」都是序列中最中間的一個數(是中位數,而不是位置上的中間),那麼每次都把目前序列分成了長度相等的兩個子序列。這時候,第一次就有n/2、n/2兩個子序列,第二次就有n/4、n/4、n/4、n/4四個子序列,依此類推,n個數總共需要logn次才能排序完成(2^x=n,x=logn),然後每次都是n的複雜度,時間複雜度為O(n logn)
最壞情況:需要進行n‐1 次遞歸調用,其空間複雜度為O(n)
最好情況:需要logn次遞歸調用,其空間複雜度為O(logn )
快速排序是一種不穩定排序演算法
例如:現有序列為[1, 0, 1, 3],「基準」數字選擇為第二個1
在第一輪比較之後,變成了[0, 1, 1, 3],左序列為[0],右序列為[1, 3](右序列的1是先前的第一個1)
不難發現,原序列的兩個1的先後順序被破壞了,改變了先後順序,自然就是「不穩定」的排序演算法了
在先前的「冒泡排序法」一文當中,我們詳細講解過O是什麼,在此就不多說了,直接上圖吧
以上是如何實現快速排序的方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!