這篇文章主要為大家詳細介紹了python實現八大排序演算法的第二篇,具有一定的參考價值,有興趣的小夥伴們可以參考一下
本文接上一篇部落格python實現的八大排序演算法part1,將繼續使用python實作八大排序演算法中的剩餘四個:快速排序、堆排序、歸併排序、基數排序
5、快速排序
快速排序是通常被認為在相同數量級(O(nlog2n))的排序方法中平均表現最好的。
演算法思想:
優點:極快,資料移動少;
缺點:不穩定。
python程式碼實作:
def quick_sort(list): little = [] pivotList = [] large = [] # 递归出口 if len(list) <= 1: return list else: # 将第一个值做为基准 pivot = list[0] for i in list: # 将比基准小的值放到less数列 if i < pivot: little.append(i) # 将比基准大的值放到more数列 elif i > pivot: large.append(i) # 将和基准相同的值保存在基准数列 else: pivotList.append(i) # 对less数列和more数列继续进行快速排序 little = quick_sort(little) large = quick_sort(large) return little + pivotList + large

#!/usr/bin/env python #coding:utf-8 ''' file:python-8sort.py date:9/1/17 9:03 AM author:lockey email:lockey@123.com desc:python实现八大排序算法 ''' lst = [65,568,9,23,4,34,65,8,6,9] def quick_sort(list): if len(list) <= 1: return list else: pivot = list[0] return quick_sort([x for x in list[1:] if x < pivot]) + \ [pivot] + \ quick_sort([x for x in list[1:] if x >= pivot])執行測試結果截圖:
#好吧,還有更精簡的語法糖,一行完事:
quick_sort = lambda xs : ( (len(xs) = xs[0]] ) ] )[0]

8、桶排序/基数排序(Radix Sort)
优点:快,效率最好能达到O(1)
缺点:
1.首先是空间复杂度比较高,需要的额外开销大。排序有两个数组的空间开销,一个存放待排序数组,一个就是所谓的桶,比如待排序值是从0到m-1,那就需要m个桶,这个桶数组就要至少m个空间。
2.其次待排序的元素都要在一定的范围内等等。
算法思想:
是将阵列分到有限数量的桶子里。每个桶子再个别排序(有可能再使用别的排序算法或是以递回方式继续使用桶排序进行排序)。桶排序是鸽巢排序的一种归纳结果。当要被排序的阵列内的数值是均匀分配的时候,桶排序使用线性时间(Θ(n))。但桶排序并不是 比较排序,他不受到 O(n log n) 下限的影响。
简单来说,就是把数据分组,放在一个个的桶中,然后对每个桶里面的在进行排序。
例如要对大小为[1..1000]范围内的n个整数A[1..n]排序
首先,可以把桶大小设为10,这样就有100个桶了,具体而言,设集合B[1]存储[1..10]的整数,集合B[2]存储 (10..20]的整数,……集合B[i]存储( (i-1)*10, i*10]的整数,i = 1,2,..100。总共有 100个桶。
然后,对A[1..n]从头到尾扫描一遍,把每个A[i]放入对应的桶B[j]中。 再对这100个桶中每个桶里的数字排序,这时可用冒泡,选择,乃至快排,一般来说任 何排序法都可以。
最后,依次输出每个桶里面的数字,且每个桶中的数字从小到大输出,这 样就得到所有数字排好序的一个序列了。
假设有n个数字,有m个桶,如果数字是平均分布的,则每个桶里面平均有n/m个数字。如果
对每个桶中的数字采用快速排序,那么整个算法的复杂度是
O(n + m * n/m*log(n/m)) = O(n + nlogn - nlogm)
从上式看出,当m接近n的时候,桶排序复杂度接近O(n)
当然,以上复杂度的计算是基于输入的n个数字是平均分布这个假设的。这个假设是很强的 ,实际应用中效果并没有这么好。如果所有的数字都落在同一个桶中,那就退化成一般的排序了。
python代码实现:
# -*- coding: UTF-8 -*- ''' Created on 2017年9月2日 Running environment:win7.x86_64 eclipse python3 @author: Lockey ''' import math lst = [65,56,9,23,84,34,8,6,9,54,11] #因为列表数据范围在100以内,所以将使用十个桶来进行排序 def radix_sort(lists, radix=10): k = int(math.ceil(math.log(max(lists), radix))) bucket = [[] for i in range(radix)] for i in range(1, k+1): for j in lists: gg = int(j/(radix**(i-1))) % (radix**i) bucket[gg].append(j) del lists[:] for z in bucket: lists += z del z[:] print(lists) return lists
程序运行测试结果:
以上是總結有關python八大排序演算法(下)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

使用NumPy創建多維數組可以通過以下步驟實現:1)使用numpy.array()函數創建數組,例如np.array([[1,2,3],[4,5,6]])創建2D數組;2)使用np.zeros(),np.ones(),np.random.random()等函數創建特定值填充的數組;3)理解數組的shape和size屬性,確保子數組長度一致,避免錯誤;4)使用np.reshape()函數改變數組形狀;5)注意內存使用,確保代碼清晰高效。

播放innumpyisamethodtoperformoperationsonArraySofDifferentsHapesbyAutapityallate AligningThem.itSimplifififiesCode,增強可讀性,和Boostsperformance.Shere'shore'showitworks:1)較小的ArraySaraySaraysAraySaraySaraySaraySarePaddedDedWiteWithOnestOmatchDimentions.2)

forpythondataTastorage,choselistsforflexibilityWithMixedDatatypes,array.ArrayFormeMory-effficityHomogeneousnumericalData,andnumpyArraysForAdvancedNumericalComputing.listsareversareversareversareversArversatilebutlessEbutlesseftlesseftlesseftlessforefforefforefforefforefforefforefforefforefforlargenumerdataSets; arrayoffray.array.array.array.array.array.ersersamiddreddregro

Pythonlistsarebetterthanarraysformanagingdiversedatatypes.1)Listscanholdelementsofdifferenttypes,2)theyaredynamic,allowingeasyadditionsandremovals,3)theyofferintuitiveoperationslikeslicing,but4)theyarelessmemory-efficientandslowerforlargedatasets.

toAccesselementsInapyThonArray,useIndIndexing:my_array [2] accessEsthethEthErlement,returning.3.pythonosezero opitedEndexing.1)usepositiveandnegativeIndexing:my_list [0] fortefirstElment,fortefirstelement,my_list,my_list [-1] fornelast.2] forselast.2)

文章討論了由於語法歧義而導致的Python中元組理解的不可能。建議使用tuple()與發電機表達式使用tuple()有效地創建元組。 (159個字符)

本文解釋了Python中的模塊和包裝,它們的差異和用法。模塊是單個文件,而軟件包是帶有__init__.py文件的目錄,在層次上組織相關模塊。

文章討論了Python中的Docstrings,其用法和收益。主要問題:Docstrings對於代碼文檔和可訪問性的重要性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SublimeText3漢化版
中文版,非常好用

WebStorm Mac版
好用的JavaScript開發工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)