這篇文章主要介紹了Python基於matplotlib繪製棧式直方圖的方法,涉及Python使用matplotlib進行圖形繪製的相關操作技巧,需要的朋友可以參考下
本文實例講述了Python基於matplotlib繪製棧式直方圖的方法。分享給大家供大家參考,具體如下:
平常我們只對一組資料做直方圖統計,這樣我們只要直接畫直方圖就可以了。
但有時候我們同時畫出多組數據的直方圖(比如說我大一到大四跑大學城內環的用時的分佈),大一到大四用不同顏色的直方圖,顯示在一張圖上,這樣會很直覺。
#!/usr/bin/env python # -*- coding: utf-8 -*- #http://www.jb51.net/article/100363.htm # numpy array intorduction #http://matplotlib.org/examples/statistics/histogram_demo_multihist.html import numpy as np import pylab as P import matplotlib d1=np.array([18.46,19.15,18.13 ,18.30 ,18.07 ,18.24 ,18.26 , 17.14 ,18.44 ,18.06 ,17.44 ,16.57 ,16.34 ,17.21 ]) d1=d1//1+(d1-d1//1)/0.6 d2=np.array([19.33 ,19.06 ,18.10 ,17.55 ,19.55 ,19.13 ,18.54 , 18.30 ,18.36 ,19.59 ,20.01 ,19.17 ,19.30 ,18.54 ,18.35 ,20.04 ]) d2=d2//1+(d2-d2//1)/0.6 d3=np.array([20.52 ,20.41 ,19.20 ,19.04 ,19.09 ,19.01 ,17.49 ,19.18 ,20.01 ,20.11 ]) d3=d3//1+(d3-d3//1)/0.6 d4=np.array([22.02 ,21.03,21.06 ,20.46 ,19.46 ,20.15 ,19.49 ,19.43 , 19.51 ,19.39 ,19.33 ,19.18 ,19.13 ,19.22 ,18.46 ,19.07 , 18.57 ,18.45 ,19.17 ,18.41 ,18.30 ]) d4=d4//1+(d4-d4//1)/0.6 x=([d1,d2,d3,d4]) P.figure() #normed is False is good n, bins, patches = P.hist(x, 12, [16.5, 22.5],normed=0, histtype='barstacked', color=['blue', 'green', 'red','yellow'], label=[' ', ' ', ' ',' ']) print type(x) P.legend()#legend should be signed after set down the information P.show()
以上圖為例,很明顯看到藍色直方圖(大一)跑得最快,黃色(大四)直方圖跑得最慢。
以上是Python中matplotlib如何繪製堆疊式直方圖的範例的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

Atom編輯器mac版下載
最受歡迎的的開源編輯器

Dreamweaver Mac版
視覺化網頁開發工具

SublimeText3 Linux新版
SublimeText3 Linux最新版