首頁  >  文章  >  Java  >  Java從JDK源碼角度看Object的實例分析

Java從JDK源碼角度看Object的實例分析

黄舟
黄舟原創
2017-07-18 09:46:241417瀏覽

Object是所有類別的父類,也就是說java中所有的類別都是直接或間接繼承自Object類別。例如你隨便建立一個class A,雖然沒有明說,但預設是extends Object的。
後面的三個點"..."表示可以接受若干不確定數量的參數。老的寫法是Object args[]這樣,但新版本的java推薦使用 ...來表示。例如

public void getSomething(String ...  strings)(){}

object 是java中所有類別的父類,也就是說所有的類,不管是自己創建的類別還是系統中的類別都繼承自object類,也就是說所有的類別在任何場合都可以代替object類,根據里氏替換原則,子類在任何場合都可以代替其父類,而父類卻不一定能代替其子類,java中常說的萬物皆對象說的其實就是這個道理! object類別體現了oop思想中的多態,繼承,封裝,抽象四大特性!

object類別是所有類別的基底類,不是資料類型。這個你可以查詢jdk文件了解,所有類別都繼承自Object。

Object ...objects這種參數定義是在不確定方法參數的情況下的一種多型表現。即這個方法可以傳遞多個參數,而這個參數的數量是不確定的。這樣你在方法體中需要相對應的做些處理。因為Object是基底類,所以使用Object ...objects這樣的參數形式,允許一切繼承自Object的物件作為參數。這種方法在實際中應該還是比較少用的。

Object[] obj這樣的形式,就是一個Object陣列所構成的參數形式。說明這個方法的參數是固定的,是一個Object數組,至於這個數組中儲存的元素,可以是繼承自Object的所有類別的物件。
這些基礎東西建議你多看幾遍"Think in java"

Java的Object是所有其他類別的父類,從繼承的層次來看它就是最頂層根,所以它也是唯一一個沒有父類別的類別。它包含了物件常用的一些方法,例如getClasshashCodeequalsclonetoStringnotifywait等常用方法。所以其他類別繼承了Object後就可以不用重複實作這些方法。這些方法大多是native方法,下面具體分析。

主要的程式碼如下:

public class Object {
  private static native void registerNatives();
  static {
    registerNatives();
  }
  public final native Class<?> getClass();
  public native int hashCode();
  public boolean equals(Object obj) {
    return (this == obj);
  }
  protected native Object clone() throws CloneNotSupportedException;
  public String toString() {
    return getClass().getName() + "@" + Integer.toHexString(hashCode());
  }

  public final native void notify();

  public final native void notifyAll();

  public final native void wait(long timeout) throws InterruptedException;

  public final void wait(long timeout, int nanos) throws InterruptedException {
    if (timeout < 0) {
      throw new IllegalArgumentException("timeout value is negative");
    }

    if (nanos < 0 || nanos > 999999) {
      throw new IllegalArgumentException("nanosecond timeout value out of range");
    }

    if (nanos > 0) {
      timeout++;
    }

    wait(timeout);
  }

  public final void wait() throws InterruptedException {
    wait(0);
  }

  protected void finalize() throws Throwable {}
}

registerNatives方法

#由於registerNatives方法被static區塊修飾,所以在載入Object類別時就會執行該方法,對應的本地方法為Java_java_lang_Object_registerNatives,如下,

JNIEXPORT void JNICALL
Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls)
{
    (*env)->RegisterNatives(env, cls,
methods, sizeof(methods)/sizeof(methods[0]));
}

可以看到它間接呼叫了JNINativeInterface_結構體的方法,簡單可以看成是這樣:它幹的事大概就是將Java層的方法名稱和本機函數對應起來,方便執行引擎在執行字節碼時根據這些對應關係表來呼叫C/C++函數,如下面,將這些方法進行註冊,執行引擎執行到hashCode方法時就可以透過關係表來查找到JVM的JVM_IHashCode函數,其中()I還可以得知Java層上的型別應該要轉為int型別。這個映射其實可以看成將字串映射到函數指標。

static JNINativeMethod methods[] = {
    {"hashCode",    "()I",                    (void *)&JVM_IHashCode},
    {"wait",        "(J)V",                   (void *)&JVM_MonitorWait},
    {"notify",      "()V",                    (void *)&JVM_MonitorNotify},
    {"notifyAll",   "()V",                    (void *)&JVM_MonitorNotifyAll},
    {"clone",       "()Ljava/lang/Object;",   (void *)&JVM_Clone},
};

getClass方法

getClass方法也是個本地方法,對應的本地方法為Java_java_lang_Object_getClass,如下:

JNIEXPORT jclass JNICALL
Java_java_lang_Object_getClass(JNIEnv *env, jobject this)
{
    if (this == NULL) {
        JNU_ThrowNullPointerException(env, NULL);
        return 0;
    } else {
        return (*env)->GetObjectClass(env, this);
    }
}

所以這裡主要就是看GetObjectClass函數了,Java層的Class在C++層與之對應的則是klassOop,所以關於類別的元資料和方法資訊可以透過它來獲得。

JNI_ENTRY(jclass, jni_GetObjectClass(JNIEnv *env, jobject obj))
  JNIWrapper("GetObjectClass");
  DTRACE_PROBE2(hotspot_jni, GetObjectClass__entry, env, obj);
  klassOop k = JNIHandles::resolve_non_null(obj)->klass();
  jclass ret =
    (jclass) JNIHandles::make_local(env, Klass::cast(k)->java_mirror());
  DTRACE_PROBE1(hotspot_jni, GetObjectClass__return, ret);
  return ret;
JNI_END

hashCode方法

由前面registerNatives方法將幾個本地方法註冊可知,hashCode方法對應的函數為JVM_IHashCode,即

JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))
  JVMWrapper("JVM_IHashCode");
  // as implemented in the classic virtual machine; return 0 if object is NULL
  return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;
JVM_END

對於hashcode產生的邏輯由synchronizer.cppget_next_hash函數決定,實作比較複雜,根據hashcode的不同值有不同的產生策略,最後使用一個hash遮罩處理。

static inline intptr_t get_next_hash(Thread * Self, oop obj) {
  intptr_t value = 0 ;
  if (hashCode == 0) {
     value = os::random() ;
  } else
  if (hashCode == 1) {
     intptr_t addrBits = intptr_t(obj) >> 3 ;
     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
  } else
  if (hashCode == 2) {
     value = 1 ;            // for sensitivity testing
  } else
  if (hashCode == 3) {
     value = ++GVars.hcSequence ;
  } else
  if (hashCode == 4) {
     value = intptr_t(obj) ;
  } else {
     unsigned t = Self->_hashStateX ;
     t ^= (t << 11) ;
     Self->_hashStateX = Self->_hashStateY ;
     Self->_hashStateY = Self->_hashStateZ ;
     Self->_hashStateZ = Self->_hashStateW ;
     unsigned v = Self->_hashStateW ;
     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
     Self->_hashStateW = v ;
     value = v ;
  }

  value &= markOopDesc::hash_mask;
  if (value == 0) value = 0xBAD ;
  assert (value != markOopDesc::no_hash, "invariant") ;
  TEVENT (hashCode: GENERATE) ;
  return value;
}

equals方法

這是一個非本地方法,判斷邏輯也十分簡單,直接==比較。

clone方法

由本地方法表知道clone方法對應的本地函數為JVM_Clone,clone方法主要實現物件的克隆功能,根據該物件產生一個相同的新物件(我們常見的類別的物件的屬性如果是原始類型則會複製值,但如果是物件則會複製物件的位址)。 Java的類別要實作複製則需要實作Cloneable接口,if (!klass->is_cloneable())這裡會校驗是否有實作該介面。然後判斷是否為陣列分兩種情況分配記憶體空間,新物件為new_obj,接著對new_obj進行copy及C++層資料結構的設定。最後再轉成jobject型別方便轉成Java層的Object型別。

JVM_ENTRY(jobject, JVM_Clone(JNIEnv* env, jobject handle))
  JVMWrapper("JVM_Clone");
  Handle obj(THREAD, JNIHandles::resolve_non_null(handle));
  const KlassHandle klass (THREAD, obj->klass());
  JvmtiVMObjectAllocEventCollector oam;

  if (!klass->is_cloneable()) {
    ResourceMark rm(THREAD);
    THROW_MSG_0(vmSymbols::java_lang_CloneNotSupportedException(), klass->external_name());
  }

  const int size = obj->size();
  oop new_obj = NULL;
  if (obj->is_javaArray()) {
    const int length = ((arrayOop)obj())->length();
    new_obj = CollectedHeap::array_allocate(klass, size, length, CHECK_NULL);
  } else {
    new_obj = CollectedHeap::obj_allocate(klass, size, CHECK_NULL);
  }
  Copy::conjoint_jlongs_atomic((jlong*)obj(), (jlong*)new_obj,
                               (size_t)align_object_size(size) / HeapWordsPerLong);
  new_obj->init_mark();

  BarrierSet* bs = Universe::heap()->barrier_set();
  assert(bs->has_write_region_opt(), "Barrier set does not have write_region");
  bs->write_region(MemRegion((HeapWord*)new_obj, size));

  if (klass->has_finalizer()) {
    assert(obj->is_instance(), "should be instanceOop");
    new_obj = instanceKlass::register_finalizer(instanceOop(new_obj), CHECK_NULL);
  }

  return JNIHandles::make_local(env, oop(new_obj));
JVM_END

toString方法

邏輯是取得class名稱加上@再加上十六進位的hashCode。

notify方法

此方法用来唤醒线程,final修饰说明不可重写。与之对应的本地方法为JVM_MonitorNotifyObjectSynchronizer::notify最终会调用ObjectMonitor::notify(TRAPS),这个过程是ObjectSynchronizer会尝试当前线程获取free ObjectMonitor对象,不成功则尝试从全局中获取。

JVM_ENTRY(void, JVM_MonitorNotify(JNIEnv* env, jobject handle))
  JVMWrapper("JVM_MonitorNotify");
  Handle obj(THREAD, JNIHandles::resolve_non_null(handle));
  assert(obj->is_instance() || obj->is_array(), "JVM_MonitorNotify must apply to an object");
  ObjectSynchronizer::notify(obj, CHECK);
JVM_END

ObjectMonitor对象包含一个_WaitSet队列对象,此对象保存着所有处于wait状态的线程,用ObjectWaiter对象表示。notify要做的事是先获取_WaitSet队列锁,再取出_WaitSet队列中第一个ObjectWaiter对象,再根据不同策略处理该对象,比如把它加入到_EntryList队列中。然后再释放_WaitSet队列锁。它并没有释放synchronized对应的锁,所以锁只能等到synchronized同步块结束时才释放。

void ObjectMonitor::notify(TRAPS) {
  CHECK_OWNER();
  if (_WaitSet == NULL) {
     TEVENT (Empty-Notify) ;
     return ;
  }
  DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);

  int Policy = Knob_MoveNotifyee ;

  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
  ObjectWaiter * iterator = DequeueWaiter() ;
  if (iterator != NULL) {
     TEVENT (Notify1 - Transfer) ;
     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
     guarantee (iterator->_notified == 0, "invariant") ;
     if (Policy != 4) {
        iterator->TState = ObjectWaiter::TS_ENTER ;
     }
     iterator->_notified = 1 ;

     ObjectWaiter * List = _EntryList ;
     if (List != NULL) {
        assert (List->_prev == NULL, "invariant") ;
        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
        assert (List != iterator, "invariant") ;
     }

     if (Policy == 0) {       // prepend to EntryList
         if (List == NULL) {
             iterator->_next = iterator->_prev = NULL ;
             _EntryList = iterator ;
         } else {
             List->_prev = iterator ;
             iterator->_next = List ;
             iterator->_prev = NULL ;
             _EntryList = iterator ;
        }
     } else
     if (Policy == 1) {      // append to EntryList
         if (List == NULL) {
             iterator->_next = iterator->_prev = NULL ;
             _EntryList = iterator ;
         } else {
            // CONSIDER:  finding the tail currently requires a linear-time walk of
            // the EntryList.  We can make tail access constant-time by converting to
            // a CDLL instead of using our current DLL.
            ObjectWaiter * Tail ;
            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
            Tail->_next = iterator ;
            iterator->_prev = Tail ;
            iterator->_next = NULL ;
        }
     } else
     if (Policy == 2) {      // prepend to cxq
         // prepend to cxq
         if (List == NULL) {
             iterator->_next = iterator->_prev = NULL ;
             _EntryList = iterator ;
         } else {
            iterator->TState = ObjectWaiter::TS_CXQ ;
            for (;;) {
                ObjectWaiter * Front = _cxq ;
                iterator->_next = Front ;
                if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
                    break ;
                }
            }
         }
     } else
     if (Policy == 3) {      // append to cxq
        iterator->TState = ObjectWaiter::TS_CXQ ;
        for (;;) {
            ObjectWaiter * Tail ;
            Tail = _cxq ;
            if (Tail == NULL) {
                iterator->_next = NULL ;
                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
                   break ;
                }
            } else {
                while (Tail->_next != NULL) Tail = Tail->_next ;
                Tail->_next = iterator ;
                iterator->_prev = Tail ;
                iterator->_next = NULL ;
                break ;
            }
        }
     } else {
        ParkEvent * ev = iterator->_event ;
        iterator->TState = ObjectWaiter::TS_RUN ;
        OrderAccess::fence() ;
        ev->unpark() ;
     }

     if (Policy < 4) {
       iterator->wait_reenter_begin(this);
     }

     // _WaitSetLock protects the wait queue, not the EntryList.  We could
     // move the add-to-EntryList operation, above, outside the critical section
     // protected by _WaitSetLock.  In practice that&#39;s not useful.  With the
     // exception of  wait() timeouts and interrupts the monitor owner
     // is the only thread that grabs _WaitSetLock.  There&#39;s almost no contention
     // on _WaitSetLock so it&#39;s not profitable to reduce the length of the
     // critical section.
  }

  Thread::SpinRelease (&_WaitSetLock) ;

  if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
     ObjectMonitor::_sync_Notifications->inc() ;
  }
}

notifyAll方法

与notify方法类似,只是在取_WaitSet队列时不是取第一个而是取所有。

wait方法

wait方法是让线程等待,它对应的本地方法是JVM_MonitorWait,间接调用了ObjectSynchronizer::wait,与notify对应,它也是对应调用ObjectMonitor对象的wait方法。该方法较长,这里不贴出来了,大概就是创建一个ObjectWaiter对象,接着获取_WaitSet队列锁将ObjectWaiter对象添加到该队列中,再释放队列锁。另外,它还会释放synchronized对应的锁,所以锁没有等到synchronized同步块结束时才释放。

JVM_ENTRY(void, JVM_MonitorWait(JNIEnv* env, jobject handle, jlong ms))
  JVMWrapper("JVM_MonitorWait");
  Handle obj(THREAD, JNIHandles::resolve_non_null(handle));
  assert(obj->is_instance() || obj->is_array(), "JVM_MonitorWait must apply to an object");
  JavaThreadInObjectWaitState jtiows(thread, ms != 0);
  if (JvmtiExport::should_post_monitor_wait()) {
    JvmtiExport::post_monitor_wait((JavaThread *)THREAD, (oop)obj(), ms);
  }
  ObjectSynchronizer::wait(obj, ms, CHECK);
JVM_END

finalize方法

这个方法用于当对象被回收时调用,这个由JVM支持,Object的finalize方法默认是什么都没有做,如果子类需要在对象被回收时执行一些逻辑处理,则可以重写finalize方法。

以上是Java從JDK源碼角度看Object的實例分析的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn