DICOM3.0影像,由醫學影像設備產生標準醫學影像影像,DICOM被廣泛應用於放射醫療,心血管影像以及放射診療診斷設備(X射線,CT,核磁共振,超音波等),並且在眼科和牙科等其它醫學領域得到越來越深入廣泛的應用。在數以萬計的在用醫學影像設備中,DICOM是部署最為廣泛的醫療資訊標準之一。目前約有百億級符合DICOM標準的醫學影像用於臨床使用。
看似神祕的影像文件,究竟是如何讀取呢?網路上隨便 一搜,都有很多方法,但缺乏比較系統的使用方法,下文綜合百度資料,結合python2.7,講解如何讀取及使用DICOM影像。
讀取DICOM影像,需要下列資料庫:pydicom、CV2、numpy、matplotlib。 pydicom專門處理dicom影像的python專用包,numpy高效處理科學計算的包,依據資料繪圖的函式庫。
安裝:
1 pip install matplotlib
pip install opencv-python #opencv的安装,小度上基本都是要下载包,安装包后把包复制到某个文件夹下, #后来我在找到这种pip的安装方法,亲测可用
1 pip install pydicom
1 pip install numpy
1 #-*-coding:utf-8-*- 2 import cv2 3 import numpy 4 import dicom 5 from matplotlib import pyplot as plt 6 7 dcm = dicom.read_file("AT0001_100225002.DCM") 8 dcm.image = dcm.pixel_array * dcm.RescaleSlope + dcm.RescaleIntercept 9 10 slices = []11 slices.append(dcm)12 img = slices[ int(len(slices)/2) ].image.copy()13 ret,img = cv2.threshold(img, 90,3071, cv2.THRESH_BINARY)14 img = numpy.uint8(img)15 16 im2, contours, _ = cv2.findContours(img,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)17 mask = numpy.zeros(img.shape, numpy.uint8)18 for contour in contours:19 cv2.fillPoly(mask, [contour], 255)20 img[(mask > 0)] = 25521 22 23 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(2,2))24 img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)25 26 27 img2 = slices[ int(len(slices)/2) ].image.copy()28 img2[(img == 0)] = -200029 30 31 plt.figure(figsize=(12, 12))32 plt.subplot(131)33 plt.imshow(slices[int(len(slices) / 2)].image, 'gray')34 plt.title('Original')35 plt.subplot(132)36 plt.imshow(img, 'gray')37 plt.title('Mask')38 plt.subplot(133)39 plt.imshow(img2, 'gray')40 plt.title('Result')41 plt.show()
1 import dicom 2 import json 3 def loadFileInformation(filename): 4 information = {} 5 ds = dicom.read_file(filename) 6 information['PatientID'] = ds.PatientID 7 information['PatientName'] = ds.PatientName 8 information['PatientBirthDate'] = ds.PatientBirthDate 9 information['PatientSex'] = ds.PatientSex10 information['StudyID'] = ds.StudyID11 information['StudyDate'] = ds.StudyDate12 information['StudyTime'] = ds.StudyTime13 information['InstitutionName'] = ds.InstitutionName14 information['Manufacturer'] = ds.Manufacturer15 print dir(ds)16 print type(information)17 return information18 19 a=loadFileInformation('AT0001_100225002.DCM')20 print a在DICOM影像裡,包含了病患的相關資訊的字典,我們可以透過dir查看DICOM檔案有什麼訊息,可以透過字典傳回相關的值。 rrreee
以上是python--DICOM影像的研究的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

禪工作室 13.0.1
強大的PHP整合開發環境

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

SublimeText3漢化版
中文版,非常好用