搜尋
首頁後端開發Python教學python中MultiProcessing函式庫的深入講解

python中MultiProcessing函式庫的深入講解

Jul 18, 2017 pm 02:02 PM
multiprocessingpython研究

MultiProcessing模組是一個優秀的類似多線程MultiThreading模組處理並發的包
之前接觸過一點這個庫,但是並沒有深入研究,這次閒著無聊就研究了一下,算是解惑吧。
今天先研究下apply_async與map方法。傳聞就是這兩個方法分配進程池中的進程給相關函數,我想驗證下。
看下官網對這兩個的解釋:
apply_async(func[, args[, kwds[, callback[, error_callback]]]])
A variant of the apply() method which returns a result object.

If callback is specified then it should be a callable which accepts a single argument. When the result becomes ready callback is applied to it, that is unless the call failed. instead.

If error_callback is specified then it should be a callable which accepts a single argument. If the target function fails, then the error_callback is called with the exception instance#exception call#callback is called with the exception instance. since otherwise the thread which handles the results will get blocked.

map(func, iterable[, chunksize])

A parallel equivalent of the map() built-in function (it #A parallel equivalent of the map() built-in one iterable argument though). It blocks until the result is ready.

This method chops the iterable into a number of chunks which it submits to the process pool as separate tasks. The (appromate) 款式be specified by setting chunksize to a positive integer.

Pool可以提供指定數量的進程供用戶調用,當有新的請求提交到pool中時,如果池還沒有滿,那麼就會創建一個新的程序用來執行該請求;但如果池中的進程數已經達到規定最大值,那麼該請求就會等待,直到池中有進程結束,才會創建新的進程來運行它

#下面看下程式:

from multiprocessing import Poolimport timeimport osdef func(msg):print('msg: %s %s' % (msg, os.getpid()))
    time.sleep(3)print("end")if __name__ == '__main__':
    pool = Pool(4)for i in range(4):
        msg = 'hello %d' % (i)
        pool.apply_async(func, (msg, ))# pool.map(func, range(4))print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~")
    pool.close()
    pool.join()   # 调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束print("Sub-process(es) done.")
執行結果:

去掉map註釋,在apply_async函數處加上註解

看下進程池進程不夠的情況下的程式及執行結果:

from multiprocessing import Poolimport timeimport osdef func(msg):print('msg: %s %s' % (msg, os.getpid()))
    time.sleep(3)print("end")if __name__ == '__main__':
    pool = Pool(3)'''for i in range(4):
        msg = 'hello %d' % (i)
        pool.apply_async(func, (msg, ))'''pool.map(func, range(4))print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~")
    pool.close()
    pool.join()   # 调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束print("Sub-process(es) done.")
程式結果:

可以看到,如果進程池的進程數量大於等於要執行的函數的次數,那就可以很順利,而且看著結果也很理所當然;但是如果進程池的進程的數量小於要運行的函數的次數,那麼就會有一個進程發生阻塞,即兩個或多個函數共用一個進程.

而且,apply_async函數的第二個參數傳入的是一個參數值,一旦運行這個函數,就會分配一個進程給函數,注意是異步的哦,因此如果需要分配多個進程就需要有一個for循環或是while循環;對於map函數,其第二個參數值接收的是一個迭代器,因此就不用在用for迴圈了。要記住,這兩個函數所實現的就是依序將進程池裡的進程分配給函數。


順便吐槽下,全英文的 MultiProcessing官網 看的很懵逼痛苦,又很有意思,不得不說,對英語還是很有幫助的.....

以上是python中MultiProcessing函式庫的深入講解的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
列表和陣列之間的選擇如何影響涉及大型數據集的Python應用程序的整體性能?列表和陣列之間的選擇如何影響涉及大型數據集的Python應用程序的整體性能?May 03, 2025 am 12:11 AM

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

說明如何將內存分配給Python中的列表與數組。說明如何將內存分配給Python中的列表與數組。May 03, 2025 am 12:10 AM

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

您如何在Python數組中指定元素的數據類型?您如何在Python數組中指定元素的數據類型?May 03, 2025 am 12:06 AM

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。

什麼是Numpy,為什麼對於Python中的數值計算很重要?什麼是Numpy,為什麼對於Python中的數值計算很重要?May 03, 2025 am 12:03 AM

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

討論'連續內存分配”的概念及其對數組的重要性。討論'連續內存分配”的概念及其對數組的重要性。May 03, 2025 am 12:01 AM

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

您如何切成python列表?您如何切成python列表?May 02, 2025 am 12:14 AM

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

在Numpy陣列上可以執行哪些常見操作?在Numpy陣列上可以執行哪些常見操作?May 02, 2025 am 12:09 AM

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,減法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Python的數據分析中如何使用陣列?Python的數據分析中如何使用陣列?May 02, 2025 am 12:09 AM

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器