搜尋
首頁後端開發Python教學Python採集--資料的儲存

Python採集--資料的儲存

Jul 17, 2017 am 09:59 AM
python數據採集

Python網路資料擷取3-資料存到CSV以及MySql

先熱身,下載某個頁面的所有圖片。

import requestsfrom bs4 import BeautifulSoup

headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)'  ' Chrome/52.0.2743.116 Safari/537.36 Edge/15.16193'}

start_url = 'https://www.pythonscraping.com'r = requests.get(start_url, headers=headers)
soup = BeautifulSoup(r.text, 'lxml')# 获取所有img标签img_tags = soup.find_all('img')for tag in img_tags:print(tag['src'])
http://pythonscraping.com/img/lrg%20(1).jpg

將網頁表格儲存到CSV檔案中

以這個網址為例,有好幾個表格,我們對第一個表格進行爬取。 Wiki-各種編輯器的比較

import csvimport requestsfrom bs4 import BeautifulSoup

headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)'  ' Chrome/52.0.2743.116 Safari/537.36 Edge/15.16193'}

url = 'https://en.wikipedia.org/wiki/Comparison_of_text_editors'r = requests.get(url, headers=headers)
soup = BeautifulSoup(r.text, 'lxml')# 只要第一个表格rows = soup.find('table', class_='wikitable').find_all('tr')# csv写入时候每写一行会有一空行被写入,所以设置newline为空with open('editors.csv', 'w', newline='', encoding='utf-8') as f:
    writer = csv.writer(f)for row in rows:
        csv_row = []for cell in row.find_all(['th', 'td']):
            csv_row.append(cell.text)

        writer.writerow(csv_row)

需要注意的有一點,開啟檔案的時候需要指定newline='',因為寫入csv檔案時,每寫入一行就會有一空行被寫入。

Python採集--資料的儲存

從網路讀取CSV檔案

上面介紹了將網頁內容儲存到CSV檔案。如果是從網路上取得到了CSV檔案呢?我們不希望下載後再從本地讀取。但是網路請求的話,回傳的是字串而非檔案物件。 csv.reader()需要傳入一個檔案物件。故需要將獲取到的字串轉換成文件物件。 Python的內建函式庫,StringIO和BytesIO可以將字串/位元組當作檔案一樣來處理。對於csv模組,要求reader迭代器傳回字串類型,所以使用StringIO,如果處理二進位數據,則用BytesIO。轉換為文件對象,就能用CSV模組處理了。

下面的程式碼最為關鍵的就是data_file = StringIO(csv_data.text)將字串轉換為類似檔案的物件。

from io import StringIOimport csvimport requests

csv_data = requests.get('http://pythonscraping.com/files/MontyPythonAlbums.csv')
data_file = StringIO(csv_data.text)
reader = csv.reader(data_file)for row in reader:print(row)
['Name', 'Year']
["Monty Python's Flying Circus", '1970']
['Another Monty Python Record', '1971']
["Monty Python's Previous Record", '1972']
['The Monty Python Matching Tie and Handkerchief', '1973']
['Monty Python Live at Drury Lane', '1974']
['An Album of the Soundtrack of the Trailer of the Film of Monty Python and the Holy Grail', '1975']
['Monty Python Live at City Center', '1977']
['The Monty Python Instant Record Collection', '1977']
["Monty Python's Life of Brian", '1979']
["Monty Python's Cotractual Obligation Album", '1980']
["Monty Python's The Meaning of Life", '1983']
['The Final Rip Off', '1987']
['Monty Python Sings', '1989']
['The Ultimate Monty Python Rip Off', '1994']
['Monty Python Sings Again', '2014']

DictReader可以像操作字典一樣取得數據,把表格的第一行(一般是標頭)當作key。可存取每一行中那個某個key對應的資料。
每一行資料都是OrderDict,使用Key可存取。看上面列印資訊的第一行,說明由NameYear兩個Key。也可以使用reader.fieldnames檢視。

from io import StringIOimport csvimport requests

csv_data = requests.get('http://pythonscraping.com/files/MontyPythonAlbums.csv')
data_file = StringIO(csv_data.text)
reader = csv.DictReader(data_file)# 查看Keyprint(reader.fieldnames)for row in reader:print(row['Year'], row['Name'], sep=': ')
['Name', 'Year']
1970: Monty Python's Flying Circus
1971: Another Monty Python Record
1972: Monty Python's Previous Record
1973: The Monty Python Matching Tie and Handkerchief
1974: Monty Python Live at Drury Lane
1975: An Album of the Soundtrack of the Trailer of the Film of Monty Python and the Holy Grail
1977: Monty Python Live at City Center
1977: The Monty Python Instant Record Collection
1979: Monty Python's Life of Brian
1980: Monty Python's Cotractual Obligation Album
1983: Monty Python's The Meaning of Life
1987: The Final Rip Off
1989: Monty Python Sings
1994: The Ultimate Monty Python Rip Off
2014: Monty Python Sings Again

存储数据

大数据存储与数据交互能力, 在新式的程序开发中已经是重中之重了.

存储媒体文件的2种主要方式: 只获取url链接, 或直接将源文件下载下来

直接引用url链接的优点:

爬虫运行得更快,耗费的流量更少,因为只要链接,不需要下载文件。

可以节省很多存储空间,因为只需要存储 URL 链接就可以。

存储 URL 的代码更容易写,也不需要实现文件下载代码。

不下载文件能够降低目标主机服务器的负载。

直接引用url链接的缺点:

这些内嵌在网站或应用中的外站 URL 链接被称为盗链(hotlinking), 每个网站都会实施防盗链措施。

因为链接文件在别人的服务器上,所以应用就要跟着别人的节奏运行了。

盗链是很容易改变的。如果盗链图片放在博客上,要是被对方服务器发现,很可能被恶搞。如果 URL 链接存起来准备以后再用,可能用的时候链接已经失效了,或者是变成了完全无关的内容。

python3的urllib.request.urlretrieve可以根据文件的url下载文件:

from urllib.request import urlretrievefrom urllib.request import urlopenfrom bs4 import BeautifulSouphtml = urlopen("http://www.pythonscraping.com")bsObj = BeautifulSoup(html)imageLocation = bsObj.find("a", {"id": "logo"}).find("img")["src"]urlretrieve (imageLocation, "logo.jpg")

csv(comma-separated values, 逗号分隔值)是存储表格数据的常用文件格式

网络数据采集的一个常用功能就是获取html表格并写入csv

除了用户定义的变量名,mysql是不区分大小写的, 习惯上mysql关键字用大写表示

连接与游标(connection/cursor)是数据库编程的2种模式:

连接模式除了要连接数据库之外, 还要发送数据库信息, 处理回滚操作, 创建游标对象等

一个连接可以创建多个游标, 一个游标跟踪一种状态信息, 比如数据库的使用状态. 游标还会包含最后一次查询执行的结果. 通过调用游标函数, 如fetchall获取查询结果

游标与连接使用完毕之后,务必要关闭, 否则会导致连接泄漏, 会一直消耗数据库资源

使用try ... finally语句保证数据库连接与游标的关闭

让数据库更高效的几种方法:

给每张表都增加id字段. 通常数据库很难智能地选择主键

用智能索引, CREATE INDEX definition ON dictionary (id, definition(16));

选择合适的范式

发送Email, 通过爬虫或api获取信息, 设置条件自动发送Email! 那些订阅邮件, 肯定就是这么来的!

Python採集--資料的儲存

保存链接之间的联系

比如链接A,能够在这个页面里找到链接B。则可以表示为A -> B。我们就是要保存这种联系到数据库。先建表:

pages表只保存链接url。

CREATE TABLE `pages` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `url` varchar(255) DEFAULT NULL,
  `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
  PRIMARY KEY (`id`)
)

links表保存链接的fromId和toId,这两个id和pages里面的id是一致的。如1 -> 2就是pages里id为1的url页面里可以访问到id为2的url的意思。

CREATE TABLE `links` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `fromId` int(11) DEFAULT NULL,
  `toId` int(11) DEFAULT NULL,
  `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
  PRIMARY KEY (`id`)

上面的建表语句看起来有点臃肿,我是先用可视化工具建表后,再用show create table pages这样的语句查看的。

import reimport pymysqlimport requestsfrom bs4 import BeautifulSoup

headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)'  ' Chrome/52.0.2743.116 Safari/537.36 Edge/15.16193'}

conn = pymysql.connect(host='localhost', user='root', password='admin', db='wiki', charset='utf8')
cur = conn.cursor()def insert_page_if_not_exists(url):
    cur.execute(f"SELECT * FROM pages WHERE url='{url}';")# 这条url没有插入的话if cur.rowcount == 0:# 那就插入cur.execute(f"INSERT INTO pages(url) VALUES('{url}');")
        conn.commit()# 刚插入数据的idreturn cur.lastrowid# 否则已经存在这条数据,因为url一般是唯一的,所以获取一个就行,取脚标0是获得idelse:return cur.fetchone()[0]def insert_link(from_page, to_page):print(from_page, ' -> ', to_page)
    cur.execute(f"SELECT * FROM links WHERE fromId={from_page} AND toId={to_page};")# 如果查询不到数据,则插入,插入需要两个pages的id,即两个urlif cur.rowcount == 0:
        cur.execute(f"INSERT INTO links(fromId, toId) VALUES({from_page}, {to_page});")
        conn.commit()# 链接去重pages = set()# 得到所有链接def get_links(page_url, recursion_level):global pagesif recursion_level == 0:return# 这是刚插入的链接page_id = insert_page_if_not_exists(page_url)
    r = requests.get('https://en.wikipedia.org' + page_url, headers=headers)
    soup = BeautifulSoup(r.text, 'lxml')
    link_tags = soup.find_all('a', href=re.compile('^/wiki/[^:/]*$'))for link_tag in link_tags:# page_id是刚插入的url,参数里再次调用了insert_page...方法,获得了刚插入的url里能去往的url列表# 由此形成联系,比如刚插入的id为1,id为1的url里能去往的id有2、3、4...,则形成1 -> 2, 1 -> 3这样的联系insert_link(page_id, insert_page_if_not_exists(link_tag['href']))if link_tag['href'] not in pages:
            new_page = link_tag['href']
            pages.add(new_page)# 递归查找, 只能递归recursion_level次get_links(new_page, recursion_level - 1)if __name__ == '__main__':try:
        get_links('/wiki/Kevin_Bacon', 5)except Exception as e:print(e)finally:
        cur.close()
        conn.close()
1  ->  2
2  ->  1
1  ->  2
1  ->  3
3  ->  4
4  ->  5
4  ->  6
4  ->  7
4  ->  8
4  ->  4
4  ->  4
4  ->  9
4  ->  9
3  ->  10
10  ->  11
10  ->  12
10  ->  13
10  ->  14
10  ->  15
10  ->  16
10  ->  17
10  ->  18
10  ->  19
10  ->  20
10  ->  21
...

看打印的信息,一目了然。看前两行打印,pages表里id为1的url可以访问id为2的url,同时pages表里id为2的url可以访问id为1的url...依次类推。

首先需要使用insert_page_if_not_exists(page_url)获得链接的id,然后使用insert_link(fromId, toId)形成联系。fromId是当前页面的url,toId则是从当前页面能够去往的url的id,这些能去往的url用bs4找到以列表形式返回。当前所处的url即page_id,所以需要在insert_link的第二个参数中,再次调用insert_page_if_not_exists(link)以获得列表中每个url的id。由此形成了联系。比如刚插入的id为1,id为1的url里能去往的id有2、3、4...,则形成1 -> 2, 1 -> 3这样的联系。

看下数据库。下面是pages表,每一个id都对应一个url。

Python採集--資料的儲存

然后下面是links表,fromIdtoId就是pages中的id。当然和打印的数据是一样的咯,不过打印了看看就过去了,存下来的话哪天需要分析这些数据就大有用处了。

Python採集--資料的儲存

以上是Python採集--資料的儲存的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python和時間:充分利用您的學習時間Python和時間:充分利用您的學習時間Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python:遊戲,Guis等Python:遊戲,Guis等Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
4 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
1 個月前By尊渡假赌尊渡假赌尊渡假赌

熱工具

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。