搜尋
首頁後端開發Python教學Python: Pandas如何有效率運算的方法

Python: Pandas如何有效率運算的方法

Jul 19, 2017 pm 01:38 PM
pandaspython探討

本文就Pandas的運作效率作一個比較的測試,來探討用哪些方式,會使得運作效率較好。

測試環境如下:

  • windows 7, 64位元

  • python 3.5

  • #pandas 0.19.2

  • numpy 1.11.3

  • jupyter notebook

#需要說明的是,不同的系統,不同的電腦配置,不同的軟體環境,運作結果可能有些差異。就算是同一台電腦,每次運作時,運作結果也不完全一樣。

1 測試內容

測試的內容為,分別用三種方法來計算一個簡單的運算過程,即 a*a+b*b 。

三種方法分別是:

  1. python的for迴圈

  2. Pandas的Series

  3. Numpy的ndarray

首先建構一個DataFrame,資料量的大小,即DataFrame的行數,分別為10, 100, 1000, … ,直到10,000,000(一千萬)。

然後在jupyter notebook中,用下面的程式碼分別去測試,來查看不同方法下的運行時間,做一個比較。

import pandas as pdimport numpy as np# 100分别用 10,100,...,10,000,000来替换运行list_a = list(range(100))# 200分别用 20,200,...,20,000,000来替换运行list_b = list(range(100,200))
print(len(list_a))
print(len(list_b))

df = pd.DataFrame({'a':list_a, 'b':list_b})
print('数据维度为:{}'.format(df.shape))
print(len(df))
print(df.head())
100
100
数据维度为:(100, 2)
100
   a    b
0  0  100
1  1  101
2  2  102
3  3  103
4  4  104
  • 執行運算, a*a + b*b

  • Method 1: for迴圈

%%timeit# 当DataFrame的行数大于等于1000000时,请用 %%time 命令for i in range(len(df)):
    df['a'][i]*df['a'][i]+df['b'][i]*df['b'][i]
100 loops, best of 3: 12.8 ms per loop
  • Method 2: Series

type(df['a'])
pandas.core.series.Series
%%timeit
df['a']*df['a']+df['b']*df['b']
The slowest run took 5.41 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 669 µs per loop
  • Method 3: ndarray

type(df['a'].values)
numpy.ndarray
%%timeit
df['a'].values*df['a'].values+df['b'].values*df['b'].values
10000 loops, best of 3: 34.2 µs per loop

2 測試結果

#運行結果如下:

##從運行結果可以看出,for迴圈明顯比Series和ndarray慢很多,且資料量越大,差異越明顯。

當資料量達到一千萬行時,for迴圈的表現也差一萬倍以上。 而Series和ndarray的差異則沒有那麼大。

PS: 1000萬行時,for迴圈運轉耗時特別長,各位若要測試,需要注意下,請用

%%time 指令(只測試一次)。

下面透過圖表來比較下Series和ndarray之間的表現。

從上圖可以看出,當資料小於10萬行時,ndarray的表現會比Series好。而當資料行數大於100萬行時,Series的表現要稍微好於ndarray。當然,兩者的差異並不是特別明顯。

所以一般情況下,個人建議,

for循環,能不用則不用,而當數量不是特別大時,建議使用ndarray(即df['col'].values)來進行運算,運作效率相對來說要好些。

以上是Python: Pandas如何有效率運算的方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Apr 02, 2025 am 07:12 AM

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何提高jieba分詞在景區評論分析中的準確性?如何提高jieba分詞在景區評論分析中的準確性?Apr 02, 2025 am 07:09 AM

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具