抓取四川大學公共管理學院官網()所有的新聞諮詢.
實驗流程
#1.確定抓取目標.
2.制定抓取規則.
3.'編寫/調試'抓取規則.
4.獲得抓取資料
1.確定抓取目標
我們這次需要抓取的目標為四川大學公共管理學院的所有新聞資訊.於是我們需要知道公管學院官網的佈局結構.

#這裡我們發現想要抓到全部的新聞資訊,不能直接在官網首頁進行抓取,需要點擊"more"進入到新聞總欄目裡面.

我們看到了具體的新聞欄位,但是這顯然不滿足我們的抓取需求: 當前新聞動態網頁只能抓取新聞的時間,標題和URL,但是並不能抓取新聞的內容.所以我們想要需要進入到新聞詳情頁抓取新聞的具體內容.
2.制定抓取規則
#透過第一部分的分析,我們會想到,如果我們要抓取一篇新聞的具體資訊,需要從新聞動態頁面點擊進入新聞詳情頁抓取到新聞的具體內容.我們點擊一篇新聞嘗試一下

我們發現,我們能夠直接在新聞詳情頁面抓取到我們需要的資料:標題,時間,內容.URL.
好,到現在我們清楚抓取一篇新聞的思路了.但是,如何抓取所有的新聞內容呢?
這顯然難不到我們.

通過抓取'新聞欄目下'所有的新聞鏈接,並且進入到新聞詳情鏈接裡面抓取所有的新聞內容.
在爬蟲中,我將實現以下幾個功能點:
1.爬出一頁新聞專欄下的所有新聞連結分別對應的知識點為:2.透過爬到的一頁新聞連結進入到新聞詳情爬取所需要資料(主要是新聞內容)
3 .透過循環爬取到所有的新聞.
1.爬出一個頁面下的基礎資料.話不多說,現在開幹.#3.1爬出一頁新聞欄位下的所有新聞連結2 .透過爬到的資料進行二次爬取.
3.透過循環對網頁進行所有資料的爬取.

Paste_Image.png

Paste_Image.png
import scrapyclass News2Spider(scrapy.Spider):
name = "news_info_2"
start_urls = ["http://ggglxy.scu.edu.cn/index.php?c=special&sid=1&page=1",
]def parse(self, response):for href in response.xpath("//div[@class='newsinfo_box cf']"):
url = response.urljoin(href.xpath("div[@class='news_c fr']/h3/a/@href").extract_first())
測試,通過!

3.2透過爬到的一頁新聞連結進入到新聞詳情爬取所需要資料(主要是新聞內容)
#現在我獲得了一組URL,現在我需要進入到每一個URL中抓取我所需要的標題,時間和內容,代碼實現也挺簡單,只需要在原有代碼抓到一個URL時進入該URL並且抓取相應的數據即可.所以,我只需要再寫一個進入新聞詳情頁的抓取方法,並且使用scapy.request調用即可.
編寫代碼
#进入新闻详情页的抓取方法 def parse_dir_contents(self, response):item = GgglxyItem()item['date'] = response.xpath("//div[@class='detail_zy_title']/p/text()").extract_first()item['href'] = responseitem['title'] = response.xpath("//div[@class='detail_zy_title']/h1/text()").extract_first() data = response.xpath("//div[@class='detail_zy_c pb30 mb30']")item['content'] = data[0].xpath('string(.)').extract()[0] yield item
整合進原有代碼後,有:
import scrapyfrom ggglxy.items import GgglxyItemclass News2Spider(scrapy.Spider): name = "news_info_2" start_urls = ["http://ggglxy.scu.edu.cn/index.php?c=special&sid=1&page=1", ]def parse(self, response):for href in response.xpath("//div[@class='newsinfo_box cf']"): url = response.urljoin(href.xpath("div[@class='news_c fr']/h3/a/@href").extract_first())#调用新闻抓取方法yield scrapy.Request(url, callback=self.parse_dir_contents)#进入新闻详情页的抓取方法 def parse_dir_contents(self, response): item = GgglxyItem() item['date'] = response.xpath("//div[@class='detail_zy_title']/p/text()").extract_first() item['href'] = response item['title'] = response.xpath("//div[@class='detail_zy_title']/h1/text()").extract_first() data = response.xpath("//div[@class='detail_zy_c pb30 mb30']") item['content'] = data[0].xpath('string(.)').extract()[0]yield item
測試,通過!

這時我們加一個循環:
NEXT_PAGE_NUM = 1 NEXT_PAGE_NUM = NEXT_PAGE_NUM + 1if NEXT_PAGE_NUM<11:next_url = 'http://ggglxy.scu.edu.cn/index.php?c=special&sid=1&page=%s' % NEXT_PAGE_NUM yield scrapy.Request(next_url, callback=self.parse)
加入原本程式碼:
import scrapyfrom ggglxy.items import GgglxyItem NEXT_PAGE_NUM = 1class News2Spider(scrapy.Spider): name = "news_info_2" start_urls = ["http://ggglxy.scu.edu.cn/index.php?c=special&sid=1&page=1", ]def parse(self, response):for href in response.xpath("//div[@class='newsinfo_box cf']"): URL = response.urljoin(href.xpath("div[@class='news_c fr']/h3/a/@href").extract_first())yield scrapy.Request(URL, callback=self.parse_dir_contents)global NEXT_PAGE_NUM NEXT_PAGE_NUM = NEXT_PAGE_NUM + 1if NEXT_PAGE_NUM<11: next_url = 'http://ggglxy.scu.edu.cn/index.php?c=special&sid=1&page=%s' % NEXT_PAGE_NUMyield scrapy.Request(next_url, callback=self.parse) def parse_dir_contents(self, response): item = GgglxyItem() item['date'] = response.xpath("//div[@class='detail_zy_title']/p/text()").extract_first() item['href'] = response item['title'] = response.xpath("//div[@class='detail_zy_title']/h1/text()").extract_first() data = response.xpath("//div[@class='detail_zy_c pb30 mb30']") item['content'] = data[0].xpath('string(.)').extract()[0] yield item
測試:

抓到的数量为191,但是我们看官网发现有193条新闻,少了两条.
为啥呢?我们注意到log的error有两条:
定位问题:原来发现,学院的新闻栏目还有两条隐藏的二级栏目:
比如:

对应的URL为

URL都长的不一样,难怪抓不到了!
那么我们还得为这两条二级栏目的URL设定专门的规则,只需要加入判断是否为二级栏目:
if URL.find('type') != -1: yield scrapy.Request(URL, callback=self.parse)
组装原函数:
import scrapy from ggglxy.items import GgglxyItem NEXT_PAGE_NUM = 1class News2Spider(scrapy.Spider): name = "news_info_2" start_urls = ["http://ggglxy.scu.edu.cn/index.php?c=special&sid=1&page=1", ]def parse(self, response):for href in response.xpath("//div[@class='newsinfo_box cf']"): URL = response.urljoin(href.xpath("div[@class='news_c fr']/h3/a/@href").extract_first())if URL.find('type') != -1:yield scrapy.Request(URL, callback=self.parse)yield scrapy.Request(URL, callback=self.parse_dir_contents) global NEXT_PAGE_NUM NEXT_PAGE_NUM = NEXT_PAGE_NUM + 1if NEXT_PAGE_NUM<11: next_url = 'http://ggglxy.scu.edu.cn/index.php?c=special&sid=1&page=%s' % NEXT_PAGE_NUMyield scrapy.Request(next_url, callback=self.parse) def parse_dir_contents(self, response): item = GgglxyItem() item['date'] = response.xpath("//div[@class='detail_zy_title']/p/text()").extract_first() item['href'] = response item['title'] = response.xpath("//div[@class='detail_zy_title']/h1/text()").extract_first() data = response.xpath("//div[@class='detail_zy_c pb30 mb30']") item['content'] = data[0].xpath('string(.)').extract()[0] yield item
测试:

我们发现,抓取的数据由以前的193条增加到了238条,log里面也没有error了,说明我们的抓取规则OK!
4.获得抓取数据
<code class="haxe"> scrapy crawl <span class="hljs-keyword">new<span class="hljs-type">s_info_2 -o <span class="hljs-number">0016.json</span></span></span></code><br/><br/>
以上是scrapy抓取學院新聞報告實例的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SublimeText3 Linux新版
SublimeText3 Linux最新版

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能