在引言章節裡,介紹了MovieLens 1M資料集的處理範例。書中介紹該資料集來自GroupLens Research(),該地址會直接跳到,這裡面提供了來自MovieLens網站的各種評估資料集,可以下載相應的壓縮包,我們需要的MovieLens 1M資料集也在裡面。
下載解壓縮後的資料夾如下:
這三個dat表都會在範例中用到。我所讀的《Python For Data Analysis》中文版(PDF)是2014年第一版的,裡面所有範例都是基於Python 2.7和pandas 0.8.2所寫的,而我安裝的是Python 3.5.2與pandas 0.20.2,裡面的一些函數與方法會有較大的不同,有些是新版本中參數改變了,而有些是新版本裡棄用了某些舊版本的函數,這導致我運行按照書中範例程式碼時,會遇到一些Error和Warning。在測試MovieLens 1M資料集程式碼時,在和一樣我的設定環境下,會遇到以下幾個問題。
-
在將dat資料讀入pandas DataFrame物件時,書中給出程式碼為:
users = pd.read_table('ml-1m/users.dat', sep='::', header=None, names=unames) rnames = ['user_id', 'movie_id', 'rating', 'timestamp'] ratings = pd.read_table('ml-1m/ratings.dat', sep='::', header=None, names=rnames) mnames = ['movie_id', 'title', 'genres'] movies = pd.read_table('ml-1m/movies.dat', sep='::', header=None, names=mnames)
直接運行會出現Warning:
F:/python/HelloWorld/DataAnalysisByPython-1.py:4: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'. users = pd.read_table('ml-1m/users.dat', sep='::', header=None, names=unames) F:/python/HelloWorld/DataAnalysisByPython-1.py:7: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'. ratings = pd.read_table('ml-1m/ratings.dat', sep='::', header=None, names=rnames) F:/python/HelloWorld/DataAnalysisByPython-1.py:10: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'. movies = pd.read_table('ml-1m/movies.dat', sep='::', header=None, names=mnames)
#雖然也能運行,但是作為完美強迫症的我還是想要解決這個Warning 。這個警告是說因為'C'引擎不支持,只能退回到'Python'引擎,而剛好pandas.read_table方法裡有個engine參數,用來設定使用哪種解析引擎,有'C'和'Python'這兩個選項。既然'C'引擎不支持,我們只需把engine設為'Python'就可以了。
users = pd.read_table('ml-1m/users.dat', sep='::', header=None, names=unames, engine = 'python') rnames = ['user_id', 'movie_id', 'rating', 'timestamp'] ratings = pd.read_table('ml-1m/ratings.dat', sep='::', header=None, names=rnames, engine = 'python') mnames = ['movie_id', 'title', 'genres'] movies = pd.read_table('ml-1m/movies.dat', sep='::', header=None, names=mnames, engine = 'python')
-
#使用pivot_table方法來對聚合後的資料以性別計算每部電影的平均得分,書中給出的程式碼為:
mean_ratings = data.pivot_table('rating', rows='title', cols='gender', aggfunc='mean')
直接運作會報錯,這段程式碼無法運作:
Traceback (most recent call last): File "F:/python/HelloWorld/DataAnalysisByPython-1.py", line 19, in <module>mean_ratings = data.pivot_table('rating', rows='title', cols='gender', aggfunc='mean') TypeError: pivot_table() got an unexpected keyword argument 'rows'</module>
TypeError說明這裡的'rows'參數並不是方法裡可用的關鍵字參數,這是這麼回事呢?去官網上查了一下pandas的API使用文件(),發現是因為0.20.2版的pandas.pivot_table裡關鍵字參數變了,為了實現同樣效果,只需把rows換成index就可以了,同時也沒有cols參數,要用columns來代替。
mean_ratings = data.pivot_table('rating', index='title', columns='gender', aggfunc='mean')
-
#為了了解女性觀眾最喜歡的電影,使用DataFrame的方法對F列進行降序排序,書中的範例程式碼為:
top_female_ratings = mean_ratings.sort_index(by='F', ascending=False)
這裡也只是給一個Warning,並不會幹擾程式進行:
F:/python/HelloWorld/DataAnalysisByPython-1.py:32: FutureWarning: by argument to sort_index is deprecated, pls use .sort_values(by=...) top_female_ratings = mean_ratings.sort_index(by='F', ascending=False)
這裡是說進行排序的sort_index方法在將來語言或函式庫中可能會改變,建議改為使用sort_values。在API使用文件中,pandas.DataFrame.sort_index的描述為“Sort object by labels (along an axis)”,而對pandas.DataFrame.sort_values的描述為“Sort by the values along either axis”,兩者能達到同樣效果,那我就直接替換成sort_values就可以了。在後面的「計算評分分歧」也會用到sort_index,也可以替換成sort_values。
top_female_ratings = mean_ratings.sort_values(by='F', ascending=False)
-
#最後一個錯誤還是和排序有關。在「計算評分分歧」中計算得分資料的標準差之後,根據篩選後的值對Series進行降序排序,書中的程式碼為:
##print(rating_std_by_title.order(ascending=False)[:10])
这里的错误是:
Traceback (most recent call last): File "F:/python/HelloWorld/DataAnalysisByPython-1.py", line 47, in <module>print(rating_std_by_title.order(ascending=False)[:10]) File "E:\Program Files\Python35\lib\site-packages\pandas\core\generic.py", line 2970, in __getattr__return object.__getattribute__(self, name) AttributeError: 'Series' object has no attribute 'order'</module>
居然已经没有这个order的方法了,只好去API文档中找替代的方法用。有两个,sort_index和sort_values,这和DataFrame中的方法一样,为了保险起见,我选择使用sort_values:
print(rating_std_by_title.sort_values(ascending=False)[:10]
得到的结果和数据展示的结果一样,可以放心使用。
第三方库不同版本间的差异还是挺明显的,建议是使用最新的版本,在使用时配合官网网站上的API使用文档,轻松解决各类问题~
以上是Python For Data Analysis學習之路的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

WebStorm Mac版
好用的JavaScript開發工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

記事本++7.3.1
好用且免費的程式碼編輯器