首頁 >後端開發 >Python教學 >python中多進程和進程池(Processing庫)的實例程式碼

python中多進程和進程池(Processing庫)的實例程式碼

零下一度
零下一度原創
2017-06-16 11:13:102154瀏覽

本篇文章主要介紹了詳解python之多進程和進程池(Processing庫),非常具有實用價值,需要的朋友可以參考下

環境:win7+python2.7

一直想學習多進程或多線程,但之前只是單純看一點基礎知識還有簡單的介紹,無法理解怎麼去應用,直到前段時間看了github的一個爬蟲項目涉及到多進程,多執行緒相關內容,一邊看一邊百度相關知識點,現在把一些相關知識點和一些應用寫下來做個記錄.

首先說下什麼是進程:進程是程式在電腦上的一次執行活動,當運行一個程式的時候,就啟動了一個進程.而進程又分為系統進程和用戶進程.只要是用於完成操作系統的各種功能的進程就是系統進程,它們就是處於運行狀態下的作業系統本身;而所有由你啟動的進程都是使用者進程。進程是作業系統進行資源分配的單位。

直觀點說,在任務管理器的用戶名上標明system的是系統進程,標明administrator的是用戶進程,另外net是網洛,lcacal service是本地服務,關於進程更加具體的信息可以百科,這裡得省點力氣,不然收不回了.

一.多進程的簡單使用

如圖,multiprocessing有多個函數,很多我也還沒去了解,這裡只講我目前了解的.

#進程創建:Process(target=主要運行的函數,name=自訂進程名稱可不寫,args=(參數))

方法:

  1. #is_alive():判斷進程是否存活

  2. ##join([timeout]):子進程結束再執行下一步,timeout為超時時間,有時進程遇到阻塞,為了程式能夠運行下去而設定超時時間
  3. run():如果在建立Process物件的時候不指定target,那麼就會預設執行Process的run方法
  4. start():啟動流程,區分run()

  5. terminate():終止進程,關於終止進程沒有這麼簡單,貌似用psutil套件會更好,有機會以後了解更多再寫下。

其中,Process以start()啟動某個行程。
屬性:

  1. authkey: 在文件中authkey()函數找到這麼一句話:Set authorization key of process設定過程的授權金鑰,目前沒找到相關應用實例,這個金鑰是怎麼用的呢?文章不提
  2. #daemon:父行程終止後自動終止,且自己不能產生新進程,必須在start()之前設定
  3. exitcode:進程在執行時為None、如果為–N,表示被訊號N結束
  4. name:進程的名字,自訂
  5. pid:每個行程都有唯一的PID編號。

1.Process(),start(),join()

# -*- coding:utf-8 -*-
from multiprocessing import Process
import time

def fun1(t):
 print 'this is fun1',time.ctime()
 time.sleep(t)
 print 'fun1 finish',time.ctime()

def fun2(t):
 print 'this is fun2',time.ctime()
 time.sleep(t)
 print 'fun2 finish',time.ctime()

if name == 'main':
 a=time.time()
 p1=Process(target=fun1,args=(4,))
 p2 = Process(target=fun2, args=(6,))
 p1.start()
 p2.start()
 p1.join()
 p2.join()
 b=time.time()
 print 'finish',b-a

這裡一共開了兩個行程,p1和p2, arg=(4,)中的4是fun1函數的參數,這裡要用tulpe類型,如果兩個參數或更多就是arg=(參數1,參數2...),之後用start()啟動進程,我們設定等待p1和p2進程結束再執行下一步.來看下面的運行結果,fun2和fun1基本上在同一時間開始運行,當運行完畢(fun1睡眠4秒,同時fun2睡眠6秒),才執行print ' finish',b-a語句

this is fun2 Mon Jun 05 13:48:04 2017
this is fun1 Mon Jun 05 13:48:04 2017
fun1 finish Mon Jun 05 13:48:08 2017
fun2 finish Mon Jun 05 13:48:10 2017
finish 6.20300006866

Process finished with exit code 0

我們再來看下start()與join()處於不同位置會發生什麼

# -*- coding:utf-8 -*-
from multiprocessing import Process
import time

def fun1(t):
 print 'this is fun1',time.ctime()
 time.sleep(t)
 print 'fun1 finish',time.ctime()

def fun2(t):
 print 'this is fun2',time.ctime()
 time.sleep(t)
 print 'fun2 finish',time.ctime()

if name == 'main':
 a=time.time()
 p1=Process(target=fun1,args=(4,))
 p2 = Process(target=fun2, args=(6,))
 p1.start()
 p1.join()
 p2.start()
 p2.join()
 b=time.time()
 print 'finish',b-a

結果:

this is fun1 Mon Jun 05 14:19:28 2017
fun1 finish Mon Jun 05 14:19:32 2017
this is fun2 Mon Jun 05 14:19:32 2017
fun2 finish Mon Jun 05 14:19:38 2017
finish 10.1229999065

Process finished with exit code 0

看,現在是先運行fun1函數,運行完畢再運行fun2接著再是print 'finish',即先運行進程p1再運行進程p2,感受到join()的魅力了吧.現在再試試註釋掉join()看看又會出現什麼

# -*- coding:utf-8 -*-
from multiprocessing import Process
import time

def fun1(t):
 print 'this is fun1',time.ctime()
 time.sleep(t)
 print 'fun1 finish',time.ctime()

def fun2(t):
 print 'this is fun2',time.ctime()
 time.sleep(t)
 print 'fun2 finish',time.ctime()

if name == 'main':
 a=time.time()
 p1=Process(target=fun1,args=(4,))
 p2 = Process(target=fun2, args=(6,))
 p1.start()
 p2.start()
 p1.join()
 #p2.join()
 b=time.time()
 print 'finish',b-a

結果:

this is fun1 Mon Jun 05 14:23:57 2017
this is fun2 Mon Jun 05 14:23:58 2017
fun1 finish Mon Jun 05 14:24:01 2017
finish 4.05900001526
fun2 finish Mon Jun 05 14:24:04 2017

Process finished with exit code 0

這次是運行完fun1(因為p1進程有用join(),所以主程式等待p1運行完接著執行下一步),接著繼續運行主進程的print 'finish',最後fun2運行完畢才結束

2.name,daemon,is_alive():

# -*- coding:utf-8 -*-
from multiprocessing import Process
import time

def fun1(t):
 print 'this is fun1',time.ctime()
 time.sleep(t)
 print 'fun1 finish',time.ctime()

def fun2(t):
 print 'this is fun2',time.ctime()
 time.sleep(t)
 print 'fun2 finish',time.ctime()

if name == 'main':
 a=time.time()
 p1=Process(name='fun1进程',target=fun1,args=(4,))
 p2 = Process(name='fun2进程',target=fun2, args=(6,))
 p1.daemon=True
 p2.daemon = True
 p1.start()
 p2.start()
 p1.join()
 print p1,p2
 print '进程1:',p1.is_alive(),'进程2:',p2.is_alive()
 #p2.join()
 b=time.time()
 print 'finish',b-a

#結果:

this is fun2 Mon Jun 05 14:43:49 2017
this is fun1 Mon Jun 05 14:43:49 2017
fun1 finish Mon Jun 05 14:43:53 2017
<Process(fun1进程, stopped daemon)> <Process(fun2进程, started daemon)>
进程1: False 进程2: True
finish 4.06500005722

Process finished with exit code 0

可以看到,name是給進程賦予名字, 運行到print '進程1:',p1.is_alive(),'進程2:',p2.is_alive() 這句話的時候,p1進程已經結束(返回False),p2進程仍在運行(返回True),但p2沒有用join(),所以直接接著執行主進程,由於用了daemon=Ture,父進程終止後自動終止,p2進程沒有結束就強行結束整個程式了.

3.run()

run()在Process沒有指定target函數時,預設用run()函數執行程式,

# -*- coding:utf-8 -*-
from multiprocessing import Process
import time

def fun1(t):
 print &#39;this is fun1&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun1 finish&#39;,time.ctime()

def fun2(t):
 print &#39;this is fun2&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun2 finish&#39;,time.ctime()

if name == &#39;main&#39;:
 a = time.time()
 p=Process()
 p.start()
 p.join()
 b = time.time()
 print &#39;finish&#39;, b - a

結果:

finish 0.0840001106262

從結果看出,進程p什麼也沒做,為了讓進程正常運作,我們醬紫寫:

目標函數沒有參數:

# -*- coding:utf-8 -*-
from multiprocessing import Process
import time

def fun1():
 print &#39;this is fun1&#39;,time.ctime()
 time.sleep(2)
 print &#39;fun1 finish&#39;,time.ctime()

def fun2(t):
 print &#39;this is fun2&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun2 finish&#39;,time.ctime()

if name == &#39;main&#39;:
 a = time.time()
 p=Process()
 p.run=fun1
 p.start()
 p.join()
 b = time.time()
 print &#39;finish&#39;, b - a

結果:

this is fun1 Mon Jun 05 16:34:41 2017
fun1 finish Mon Jun 05 16:34:43 2017
finish 2.11500000954

Process finished with exit code 0

目標函數有參數:

# -*- coding:utf-8 -*-
from multiprocessing import Process
import time

def fun1(t):
 print &#39;this is fun1&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun1 finish&#39;,time.ctime()

def fun2(t):
 print &#39;this is fun2&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun2 finish&#39;,time.ctime()

if name == &#39;main&#39;:
 a = time.time()
 p=Process()
 p.run=fun1(2)
 p.start()
 p.join()
 b = time.time()
 print &#39;finish&#39;, b - a

結果:

this is fun1 Mon Jun 05 16:36:27 2017
fun1 finish Mon Jun 05 16:36:29 2017
Process Process-1:
Traceback (most recent call last):
 File "E:\Anaconda2\lib\multiprocessing\process.py", line 258, in _bootstrap
 self.run()
TypeError: &#39;NoneType&#39; object is not callable
finish 2.0529999733

Process finished with exit code 0

目標函數有參數的出現了異常,為什麼呢?我現在還找不到原因,但是實踐發現,當最後一個參數賦予進程運行後,沒有其他參數,就會出現這個異常,有人知道的望告知.

二.進程池# #####

对于需要使用几个甚至十几个进程时,我们使用Process还是比较方便的,但是如果要成百上千个进程,用Process显然太笨了,multiprocessing提供了Pool类,即现在要讲的进程池,能够将众多进程放在一起,设置一个运行进程上限,每次只运行设置的进程数,等有进程结束,再添加新的进程

Pool(processes =num):设置运行进程数,当一个进程运行完,会添加新的进程进去

apply_async(函数,(参数)):非阻塞,其中参数是tulpe类型,

apply(函数,(参数)):阻塞

close():关闭pool,不能再添加新的任务

terminate():结束运行的进程,不再处理未完成的任务

join():和Process介绍的作用一样, 但要在close或terminate之后使用。

1.单个进程池

# -*- coding:utf-8 -*-
from multiprocessing import Pool
import time

def fun1(t):
 print &#39;this is fun1&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun1 finish&#39;,time.ctime()

def fun2(t):
 print &#39;this is fun2&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun2 finish&#39;,time.ctime()

if name == &#39;main&#39;:
 a=time.time()
 pool = Pool(processes =3) # 可以同时跑3个进程
 for i in range(3,8):
  pool.apply_async(fun1,(i,))
 pool.close()
 pool.join()
 b=time.time()
 print &#39;finish&#39;,b-a

结果:

this is fun1 Mon Jun 05 15:15:38 2017
this is fun1 Mon Jun 05 15:15:38 2017
this is fun1 Mon Jun 05 15:15:38 2017
fun1 finish Mon Jun 05 15:15:41 2017
this is fun1 Mon Jun 05 15:15:41 2017
fun1 finish Mon Jun 05 15:15:42 2017
this is fun1 Mon Jun 05 15:15:42 2017
fun1 finish Mon Jun 05 15:15:43 2017
fun1 finish Mon Jun 05 15:15:47 2017
fun1 finish Mon Jun 05 15:15:49 2017
finish 11.1370000839

Process finished with exit code 0

从上面的结果可以看到,设置了3个运行进程上限,15:15:38这个时间同时开始三个进程,当第一个进程结束时(参数为3秒那个进程),会添加新的进程,如此循环,直至进程池运行完再执行主进程语句b=time.time() print 'finish',b-a .这里用到非阻塞apply_async(),再来对比下阻塞apply()

# -*- coding:utf-8 -*-
from multiprocessing import Pool
import time

def fun1(t):
 print &#39;this is fun1&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun1 finish&#39;,time.ctime()

def fun2(t):
 print &#39;this is fun2&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun2 finish&#39;,time.ctime()

if name == &#39;main&#39;:
 a=time.time()
 pool = Pool(processes =3) # 可以同时跑3个进程
 for i in range(3,8):
  pool.apply(fun1,(i,))
 pool.close()
 pool.join()
 b=time.time()
 print &#39;finish&#39;,b-a

结果:

this is fun1 Mon Jun 05 15:59:26 2017
fun1 finish Mon Jun 05 15:59:29 2017
this is fun1 Mon Jun 05 15:59:29 2017
fun1 finish Mon Jun 05 15:59:33 2017
this is fun1 Mon Jun 05 15:59:33 2017
fun1 finish Mon Jun 05 15:59:38 2017
this is fun1 Mon Jun 05 15:59:38 2017
fun1 finish Mon Jun 05 15:59:44 2017
this is fun1 Mon Jun 05 15:59:44 2017
fun1 finish Mon Jun 05 15:59:51 2017
finish 25.1610000134

Process finished with exit code 0

可以看到,阻塞是当一个进程结束后,再进行下一个进程,一般我们都用非阻塞apply_async()

2.多个进程池

上面是使用单个进程池的,对于多个进程池,我们可以用for循环,直接看代码

# -*- coding:utf-8 -*-
from multiprocessing import Pool
import time

def fun1(t):
 print &#39;this is fun1&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun1 finish&#39;,time.ctime()

def fun2(t):
 print &#39;this is fun2&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun2 finish&#39;,time.ctime()

if name == &#39;main&#39;:
 a=time.time()
 pool = Pool(processes =3) # 可以同时跑3个进程
 for fun in [fun1,fun2]:
  for i in range(3,8):
   pool.apply_async(fun,(i,))
 pool.close()
 pool.join()
 b=time.time()
 print &#39;finish&#39;,b-a

结果:

this is fun1 Mon Jun 05 16:04:38 2017
this is fun1 Mon Jun 05 16:04:38 2017
this is fun1 Mon Jun 05 16:04:38 2017
fun1 finish Mon Jun 05 16:04:41 2017
this is fun1 Mon Jun 05 16:04:41 2017
fun1 finish Mon Jun 05 16:04:42 2017
this is fun1 Mon Jun 05 16:04:42 2017
fun1 finish Mon Jun 05 16:04:43 2017
this is fun2 Mon Jun 05 16:04:43 2017
fun2 finish Mon Jun 05 16:04:46 2017
this is fun2 Mon Jun 05 16:04:46 2017
fun1 finish Mon Jun 05 16:04:47 2017
this is fun2 Mon Jun 05 16:04:47 2017
fun1 finish Mon Jun 05 16:04:49 2017
this is fun2 Mon Jun 05 16:04:49 2017
fun2 finish Mon Jun 05 16:04:50 2017
this is fun2 Mon Jun 05 16:04:50 2017
fun2 finish Mon Jun 05 16:04:52 2017
fun2 finish Mon Jun 05 16:04:55 2017
fun2 finish Mon Jun 05 16:04:57 2017
finish 19.1670000553

Process finished with exit code 0

看到了,在fun1运行完接着运行fun2.

另外对于没有参数的情况,就直接 pool.apply_async(funtion),无需写上参数.

在学习编写程序过程,曾遇到不用if _name_ == '_main_':而直接运行程序,这样结果会出错,经查询,在Windows上要想使用进程模块,就必须把有关进程的代码写在当前.py文件的if _name_ == ‘_main_' :语句的下面,才能正常使用Windows下的进程模块。Unix/Linux下则不需要。原因有人这么说:在执行的時候,由于你写的 py 会被当成module 读进执行。所以,一定要判断自身是否为 _main_。也就是要:

if name == ‘main&#39; :
# do something.

这里我自己还搞不清楚,期待以后能够理解

以上是python中多進程和進程池(Processing庫)的實例程式碼的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn