這篇文章主要介紹了Python 稀疏矩陣-sparse 儲存和轉換的相關資料,需要的朋友可以參考下
##稀疏矩陣-sparsep#
from scipy import sparse
稀疏矩陣的儲存形式
在科學與工程領域中求解線性模型時經常出現許多大型的矩陣,這些矩陣中大部分的元素都為0,稱為稀疏矩陣。用NumPy的ndarray數組保存這樣的矩陣,將很浪費內存,由於矩陣的稀疏特性,可以通過只保存非零元素的相關信息,從而節約內存的使用。此外,針對這種特殊結構的矩陣編寫運算函數,也可以提高矩陣的運算速度。
scipy.sparse庫中提供了多種表示稀疏矩陣的格式,每種格式都有不同的用處,其中dok_matrix和lil_matrix適合逐漸添加元素。 dok_matrix從dict繼承,它採用字典保存矩陣中不為0的元素:字典的鍵是一個保存元素(行,列)資訊的元組,其對應的值為矩陣中位於(行,列)中的元素值。顯然字典格式的稀疏矩陣很適合單一元素的新增、刪除和存取操作。通常用來逐漸加入非零元素,然後轉換成其它支援快速運算的格式。
a = sparse.dok_matrix((10, 5)) a[2:5, 3] = 1.0, 2.0, 3.0 print a.keys() print a.values()
[(2, 3), (3, 3), (4, 3)] [1.0, 2.0, 3.0]lil_matrix使用兩個清單儲存非零元素。 data保存每行中的非零元素,rows保存非零元素所在的列。這種格式也很適合逐一加入元素,並且能快速取得行相關的資料。
b = sparse.lil_matrix((10, 5)) b[2, 3] = 1.0 b[3, 4] = 2.0 b[3, 2] = 3.0 print b.data print b.rows
[[] [] [1.0] [3.0, 2.0] [] [] [] [] [] []] [[] [] [3] [2, 4] [] [] [] [] [] []]coo_matrix採用三個陣列row、col和data保存非零元素的資訊。這三個陣列的長度相同,row保存元素的行,col保存元素的列,data保存元素的值。 coo_matrix不支援元素的存取和增刪,一旦創建之後,除了將之轉換成其它格式的矩陣,幾乎無法對其做任何操作和矩陣運算。 coo_matrix支援重複元素,即相同行列座標可以出現多次,當轉換為其它格式的矩陣時,將對相同行列座標對應的多個值進行求和。在下面的例子中,(2, 3)對應兩個值:1和10,將其轉換為ndarray數組時這兩個值加在一起,所以最終矩陣中(2, 3)座標上的值為11 。 許多稀疏矩陣的資料都是採用這種格式保存在檔案中的,例如某個CSV檔案中可能有這樣三列:「使用者ID,商品ID,評價值」。採用numpy.loadtxt或pandas.read_csv將資料讀入之後,可以透過coo_matrix快速將其轉換成稀疏矩陣:矩陣的每行對應一位用戶,每列對應一件商品,而元素值為用戶對商品的評價。
row = [2, 3, 3, 2] col = [3, 4, 2, 3] data = [1, 2, 3, 10] c = sparse.coo_matrix((data, (row, col)), shape=(5, 6)) print c.col, c.row, c.data print c.toarray()
[3 4 2 3] [2 3 3 2] [ 1 2 3 10] [[ 0 0 0 0 0 0] [ 0 0 0 0 0 0] [ 0 0 0 11 0 0] [ 0 0 3 0 2 0] [ 0 0 0 0 0 0]]個人操作中選擇,coo_matrix 選在因為涉及稀疏矩陣運算,但是如果不用其他形式存儲則複雜度太高(時間和空間)1000*1000的matrix大約話2h,也是要命了。無奈想到了Pajek軟體中資料的輸入格式三元組:
以上是Python稀疏矩陣之sparse儲存與轉換的詳細介紹的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。

Python適合快速開發和數據處理,而C 適合高性能和底層控制。 1)Python易用,語法簡潔,適用於數據科學和Web開發。 2)C 性能高,控制精確,常用於遊戲和系統編程。

學習Python所需時間因人而異,主要受之前的編程經驗、學習動機、學習資源和方法及學習節奏的影響。設定現實的學習目標並通過實踐項目學習效果最佳。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Dreamweaver Mac版
視覺化網頁開發工具