二元查找樹(Binary Search Tree)是一種能將鍊錶插入的靈活性和有序數組查找的高效性結合起來的演算法。以下是實作BST各種方法的乾貨純程式碼。
#二元排序樹或是一棵空樹,或者是具有下列性質的二元樹:
若左子樹不空,則左子樹上所有結點的值均小於或等於它的根結點的值
#若右子樹不空,則右子樹上所有結點的值均大於或等於它的根結點的值
- ##左、右子樹也
分別為二元排序樹
public class BST<K extends Comparable<K>, V> { private Node root; private class Node { private K key; private V value; private Node left; private Node right; private int N; public Node(K key, V value, int N) { this.key = key; this.value = value; this.N = N; } } public int size() { return size(root); } private int size(Node x) { if (x == null) return 0; else return x.N; } }
public V get(K key) { return get(root, key); } private V get(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp == 0) return root.value; else if (comp < 0) return get(root.left, key); else return get(root.right, key); }
public void put(K key, V value) { root = put(root, key, value); } private Node put(Node root, K key, V value) { if (root == null) return new Node(key, value, 1); int comp = key.compareTo(root.key); if (comp == 0) root.value = value; else if (comp < 0) root.left = put(root.left, key, value); else root.right = put(root.right, key, value); root.N = size(root.left) + size(root.right) + 1; return root; }
public K min() { return min(root).key; } private Node min(Node root) { if (root.left == null) return root; return min(root.left); }
public K max() { return max(root).key; } private Node max(Node root2) { if (root.right == null) return root; return max(root.right); }
public K floor(K key) { Node x = floor(root, key); if (x == null) return null; return x.key; } private Node floor(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp < 0) return floor(root.left, key); else if (comp > 0 && root.right != null && key.compareTo(min(root.right).key) >= 0) return floor(root.right, key); else return root; }
public K ceiling(K key) { Node x = ceiling(root, key); if (x == null) return null; return x.key; } private Node ceiling(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp > 0) return ceiling(root.right, key); else if (comp < 0 && root.left != null && key.compareTo(max(root.left).key) >= 0) return ceiling(root.left, key); else return root; }
public K select(int k) { //找出BST中序号为k的键 return select(root, k); } private K select(Node root, int k) { if (root == null) return null; int comp = k - size(root.left); if (comp < 0) return select(root.left, k); else if (comp > 0) return select(root.right, k - (size(root.left) + 1)); else return root.key; }
public int rank(K key) { //找出BST中键为key的序号是多少 return rank(root, key); } private int rank(Node root, K key) { if (root == null) return 0; int comp = key.compareTo(root.key); if (comp == 0) return size(root.left); else if (comp < 0) return rank(root.left, key); else return 1 + size(root.left) + rank(root.right, key); }
public void deleteMin() { root = deleteMin(root); } private Node deleteMin(Node root) { if (root.left == null) return root.right; root.left = deleteMin(root.left); root.N = size(root.left) + size(root.right) + 1; return root; }
public void deleteMax() { root = deleteMax(root); } private Node deleteMax(Node root) { if (root.right == null) return root.left; root.right = deleteMax(root.right); root.N = size(root.left) + size(root.right) + 1; return root; }
public void delete(K key) { root = delete(root, key); } private Node delete(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp == 0) { if (root.right == null) return root = root.left; if (root.left == null) return root = root.right; Node t = root; root = min(t.right); root.left = t.left; root.right = deleteMin(t.right); } else if (comp < 0) root.left = delete(root.left, key); else root.right = delete(root.right, key); root.N = size(root.left) + size(root.right) + 1; return root; }
public void print() { print(root); } private void print(Node root) { if (root == null) return; print(root.left); System.out.println(root.key); print(root.right); }
以上是java-二元查找樹(BST)演算法的範例程式碼分享的詳細內容。更多資訊請關注PHP中文網其他相關文章!