首頁  >  文章  >  資料庫  >  MySQL 效能最佳化--Explain 使用介紹

MySQL 效能最佳化--Explain 使用介紹

零下一度
零下一度原創
2017-05-05 16:31:241211瀏覽

簡介

MySQL 提供了一個EXPLAIN 指令, 它可以對SELECT 語句進行分析, 並輸出SELECT 執行的詳細資訊, 以供開發人員針對性最佳化.
EXPLAIN 指令用法十分簡單, 在SELECT 語句前加上Explain 就可以了, 例如:

EXPLAIN SELECT * from user_info WHERE  id < 300;

準備

為了接下來方便示範EXPLAIN 的使用, 首先我們需要建立兩個測試用的表, 並添加對應的資料:

CREATE TABLE `user_info` (
  `id`   BIGINT(20)  NOT NULL AUTO_INCREMENT,
  `name` VARCHAR(50) NOT NULL DEFAULT &#39;&#39;,
  `age`  INT(11)              DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `name_index` (`name`)
)
  ENGINE = InnoDB
  DEFAULT CHARSET = utf8

INSERT INTO user_info (name, age) VALUES (&#39;xys&#39;, 20);
INSERT INTO user_info (name, age) VALUES (&#39;a&#39;, 21);
INSERT INTO user_info (name, age) VALUES (&#39;b&#39;, 23);
INSERT INTO user_info (name, age) VALUES (&#39;c&#39;, 50);
INSERT INTO user_info (name, age) VALUES (&#39;d&#39;, 15);
INSERT INTO user_info (name, age) VALUES (&#39;e&#39;, 20);
INSERT INTO user_info (name, age) VALUES (&#39;f&#39;, 21);
INSERT INTO user_info (name, age) VALUES (&#39;g&#39;, 23);
INSERT INTO user_info (name, age) VALUES (&#39;h&#39;, 50);
INSERT INTO user_info (name, age) VALUES (&#39;i&#39;, 15);
CREATE TABLE `order_info` (
  `id`           BIGINT(20)  NOT NULL AUTO_INCREMENT,
  `user_id`      BIGINT(20)           DEFAULT NULL,
  `product_name` VARCHAR(50) NOT NULL DEFAULT &#39;&#39;,
  `productor`    VARCHAR(30)          DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
)
  ENGINE = InnoDB
  DEFAULT CHARSET = utf8

INSERT INTO order_info (user_id, product_name, productor) VALUES (1, &#39;p1&#39;, &#39;WHH&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, &#39;p2&#39;, &#39;WL&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, &#39;p1&#39;, &#39;DX&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, &#39;p1&#39;, &#39;WHH&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, &#39;p5&#39;, &#39;WL&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (3, &#39;p3&#39;, &#39;MA&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (4, &#39;p1&#39;, &#39;WHH&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (6, &#39;p1&#39;, &#39;WHH&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (9, &#39;p8&#39;, &#39;TE&#39;);

EXPLAIN 輸出格式

EXPLAIN 指令的輸出內容大致如下:

<pre class="brush:sql;toolbar:false;">mysql&gt; explain select * from user_info where id = 2\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: user_info partitions: NULL type: const possible_keys: PRIMARY key: PRIMARY key_len: 8 ref: const rows: 1 filtered: 100.00 Extra: NULL 1 row in set, 1 warning (0.00 sec)</pre>

各列的意義如下:

  • id: SELECT 查詢的識別碼. 每個SELECT 都會自動分配一個唯一的識別碼.

  • select_type : SELECT 查詢的類型.

  • table: 查詢的是哪個表格

  • ##partitions: 符合的分區

  • #type: join 類型

  • possible_keys: 此查詢中可能選取的索引

  • ##key: 此查詢中確切使用到的索引.
  • ref: 哪個欄位或常數與key 一起被使用
  • rows: 顯示此查詢一共掃描了多少行.這是一個估計值.
  • filtered: 表示此查詢條件所過濾的資料的百分比
  • extra: 額外的資訊
  • 接下來我們來重點看一下比較重要的幾個字段.

select_type

select_type

表示了查詢的類型, 它的常用取值有:

    SIMPLE, 表示此查詢不包含UNION 查詢或子查詢
  • PRIMARY, 表示此查詢是最外層的查詢
  • UNION, 表示此查詢是UNION 的第二或隨後的查詢
  • DEPENDENT UNION, UNION 中的第二個或後面的查詢語句, 取決於外面的查詢
  • UNION RESULT, UNION 的結果
  • SUBQUERY, 子查詢中的第一個SELECT
  • DEPENDENT SUBQUERY: 子查詢中的第一個SELECT, 取決於外面的查詢.即子查詢依賴外層查詢的結果.
  • #最常見的查詢類別應該是
SIMPLE

了, 例如當我們的查詢沒有子查詢, 也沒有UNION 查詢時, 那麼通常就是SIMPLE 類型, 例如:<pre class="brush:sql;toolbar:false;">mysql&gt; explain select * from user_info where id = 2\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: user_info partitions: NULL type: const possible_keys: PRIMARY key: PRIMARY key_len: 8 ref: const rows: 1 filtered: 100.00 Extra: NULL 1 row in set, 1 warning (0.00 sec)</pre>如果我們使用了UNION 查詢, 那麼EXPLAIN 輸出的結果類似如下:

mysql> EXPLAIN (SELECT * FROM user_info  WHERE id IN (1, 2, 3))
    -> UNION
    -> (SELECT * FROM user_info WHERE id IN (3, 4, 5));
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
| id | select_type  | table      | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra           |
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
|  1 | PRIMARY      | user_info  | NULL       | range | PRIMARY       | PRIMARY | 8       | NULL |    3 |   100.00 | Using where     |
|  2 | UNION        | user_info  | NULL       | range | PRIMARY       | PRIMARY | 8       | NULL |    3 |   100.00 | Using where     |
| NULL | UNION RESULT | <union1,2> | NULL       | ALL   | NULL          | NULL    | NULL    | NULL | NULL |     NULL | Using temporary |
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
3 rows in set, 1 warning (0.00 sec)

table

表示查詢涉及的表或衍生表

#type

type

欄位比較重要, 它提供了判斷查詢是否高效的重要依據依據. 通過type 字段, 我們判斷此次查詢是全表掃描索引掃描 等.type 常用型別

type 常用的取值有:

##system : 表中只有一條資料. 這個型別是特殊的
    const
  • 類型.

    #const: 針對主鍵或唯一索引的等值查詢掃描, 最多只回傳一行資料. const 查詢速度非常快, 因為它僅僅讀取一次即可.
  • 例如下面的這個查詢, 它使用了主鍵索引, 因此
  • type

    就是
    const 類型的.

    mysql> explain select * from user_info where id = 2\G
    *************************** 1. row ***************************
            id: 1
    select_type: SIMPLE
         table: user_info
    partitions: NULL
          type: const
    possible_keys: PRIMARY
           key: PRIMARY
       key_len: 8
           ref: const
          rows: 1
      filtered: 100.00
         Extra: NULL
    1 row in set, 1 warning (0.00 sec)

    eq_ref: 此類型通常出現在多表的join 查詢,  表示對於前表的每一個結果, 都只能匹配到後表的一行結果. 並且查詢的比較操作通常是
  • =
  • , 查詢效率較高. 例如:

    mysql> EXPLAIN SELECT * FROM user_info, order_info WHERE user_info.id = order_info.user_id\G
    *************************** 1. row ***************************
            id: 1
    select_type: SIMPLE
         table: order_info
    partitions: NULL
          type: index
    possible_keys: user_product_detail_index
           key: user_product_detail_index
       key_len: 314
           ref: NULL
          rows: 9
      filtered: 100.00
         Extra: Using where; Using index
    *************************** 2. row ***************************
            id: 1
    select_type: SIMPLE
         table: user_info
    partitions: NULL
          type: eq_ref
    possible_keys: PRIMARY
           key: PRIMARY
       key_len: 8
           ref: test.order_info.user_id
          rows: 1
      filtered: 100.00
         Extra: NULL
    2 rows in set, 1 warning (0.00 sec)

    #ref: 此型別通常出現在多表的join 查詢, 針對於非唯一或非主鍵索引, 或是使用了
  • 最左前綴
  • 規則索引的查詢.

    例如下面這個例子中, 就使用到了ref 類型的查詢:

    mysql> EXPLAIN SELECT * FROM user_info, order_info WHERE user_info.id = order_info.user_id AND order_info.user_id = 5\G
    *************************** 1. row ***************************
            id: 1
    select_type: SIMPLE
         table: user_info
    partitions: NULL
          type: const
    possible_keys: PRIMARY
           key: PRIMARY
       key_len: 8
           ref: const
          rows: 1
      filtered: 100.00
         Extra: NULL
    *************************** 2. row ***************************
            id: 1
    select_type: SIMPLE
         table: order_info
    partitions: NULL
          type: ref
    possible_keys: user_product_detail_index
           key: user_product_detail_index
       key_len: 9
           ref: const
          rows: 1
      filtered: 100.00
         Extra: Using index
    2 rows in set, 1 warning (0.01 sec)

    range: 表示使用索引範圍查詢, 透過索引欄位範圍來取得表格中部分資料記錄. 這個型別通常出現在 =, a8093152e673feb7aba1828c43532094, >, >=, 0bd892685d35f3a0a1bfb7508ab9ca59, BETWEEN, IN() 操作中.
  • type


    range 時, 那麼EXPLAIN 輸出的ref 字段為NULL, 並且key_len 字段是此次查詢中使用到的索引的最長的那個.例如下面的例子就是一個範圍查詢:<pre class="brush:sql;toolbar:false;">mysql&gt; EXPLAIN SELECT * -&gt; FROM user_info -&gt; WHERE id BETWEEN 2 AND 8 \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: user_info partitions: NULL type: range possible_keys: PRIMARY key: PRIMARY key_len: 8 ref: NULL rows: 7 filtered: 100.00 Extra: Using where 1 row in set, 1 warning (0.00 sec)</pre>

    #index: 表示全索引掃描(full index scan), 和ALL 類型類似, 只不過ALL 類型是全表掃描, 而index 類型則僅掃描所有的索引, 而不掃描資料.
  • index類型通常出現在: 所要查詢的資料直接在索引樹中就可以獲得到, 而不需要掃描資料. 當是這種情況時, Extra 欄位會顯示
  • Using index

    .

    #例如:
  • mysql> EXPLAIN SELECT name FROM  user_info \G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: user_info
       partitions: NULL
             type: index
    possible_keys: NULL
              key: name_index
          key_len: 152
              ref: NULL
             rows: 10
         filtered: 100.00
            Extra: Using index
    1 row in set, 1 warning (0.00 sec)
上面的例子中, 我們查詢的name 欄位恰好是一個索引, 因此我們直接從索引中取得資料就可以滿足查詢的需求了, 而不需要查詢表中的資料. 因此這樣的情況下, type 的值是

index

, 而Extra 的值是

Using index.#

  • ALL: 表示全表扫描, 这个类型的查询是性能最差的查询之一. 通常来说, 我们的查询不应该出现 ALL 类型的查询, 因为这样的查询在数据量大的情况下, 对数据库的性能是巨大的灾难. 如一个查询是 ALL 类型查询, 那么一般来说可以对相应的字段添加索引来避免.
    下面是一个全表扫描的例子, 可以看到, 在全表扫描时, possible_keys 和 key 字段都是 NULL, 表示没有使用到索引, 并且 rows 十分巨大, 因此整个查询效率是十分低下的.

    mysql> EXPLAIN SELECT age FROM  user_info WHERE age = 20 \G
    *************************** 1. row ***************************
            id: 1
    select_type: SIMPLE
         table: user_info
    partitions: NULL
          type: ALL
    possible_keys: NULL
           key: NULL
       key_len: NULL
           ref: NULL
          rows: 10
      filtered: 10.00
         Extra: Using where
    1 row in set, 1 warning (0.00 sec)

    type 类型的性能比较

    通常来说, 不同的 type 类型的性能关系如下:
    ALL < index < range ~ index_merge < ref < eq_ref < const < system
    ALL 类型因为是全表扫描, 因此在相同的查询条件下, 它是速度最慢的.
    index 类型的查询虽然不是全表扫描, 但是它扫描了所有的索引, 因此比 ALL 类型的稍快.
    后面的几种类型都是利用了索引来查询数据, 因此可以过滤部分或大部分数据, 因此查询效率就比较高了.

possible_keys

possible_keys 表示 MySQL 在查询时, 能够使用到的索引. 注意, 即使有些索引在 possible_keys 中出现, 但是并不表示此索引会真正地被 MySQL 使用到. MySQL 在查询时具体使用了哪些索引, 由 key 字段决定.

key

此字段是 MySQL 在当前查询时所真正使用到的索引.

key_len

表示查询优化器使用了索引的字节数. 这个字段可以评估组合索引是否完全被使用, 或只有最左部分字段被使用到.
key_len 的计算规则如下:

  • 字符串

    • char(n): n 字节长度

    • varchar(n): 如果是 utf8 编码, 则是 3 n + 2字节; 如果是 utf8mb4 编码, 则是 4 n + 2 字节.

  • 数值类型:

    • TINYINT: 1字节

    • SMALLINT: 2字节

    • MEDIUMINT: 3字节

    • INT: 4字节

    • BIGINT: 8字节

  • 时间类型

    • DATE: 3字节

    • TIMESTAMP: 4字节

    • DATETIME: 8字节

  • 字段属性: NULL 属性 占用一个字节. 如果一个字段是 NOT NULL 的, 则没有此属性.

我们来举两个简单的栗子:

mysql> EXPLAIN SELECT * FROM order_info WHERE user_id < 3 AND product_name = &#39;p1&#39; AND productor = &#39;WHH&#39; \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: range
possible_keys: user_product_detail_index
          key: user_product_detail_index
      key_len: 9
          ref: NULL
         rows: 5
     filtered: 11.11
        Extra: Using where; Using index
1 row in set, 1 warning (0.00 sec)

上面的例子是从表 order_info 中查询指定的内容, 而我们从此表的建表语句中可以知道, 表 order_info 有一个联合索引:

KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)

不过此查询语句 WHERE user_id < 3 AND product_name = 'p1' AND productor = 'WHH' 中, 因为先进行 user_id 的范围查询, 而根据 最左前缀匹配 原则, 当遇到范围查询时, 就停止索引的匹配, 因此实际上我们使用到的索引的字段只有 user_id, 因此在 EXPLAIN    中, 显示的 key_len 为 9. 因为 user_id 字段是 BIGINT, 占用 8 字节, 而 NULL 属性占用一个字节, 因此总共是 9 个字节. 若我们将user_id 字段改为 BIGINT(20)  NOT NULL DEFAULT '0', 则 key_length 应该是8.

上面因为 最左前缀匹配 原则, 我们的查询仅仅使用到了联合索引的 user_id 字段, 因此效率不算高.

接下来我们来看一下下一个例子:

mysql> EXPLAIN SELECT * FROM order_info WHERE user_id = 1 AND product_name = &#39;p1&#39; \G;
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: ref
possible_keys: user_product_detail_index
          key: user_product_detail_index
      key_len: 161
          ref: const,const
         rows: 2
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.00 sec)

这次的查询中, 我们没有使用到范围查询, key_len 的值为 161. 为什么呢? 因为我们的查询条件 WHERE user_id = 1 AND product_name = 'p1' 中, 仅仅使用到了联合索引中的前两个字段, 因此 keyLen(user_id) + keyLen(product_name) = 9 + 50 * 3 + 2 = 161

rows

rows 也是一个重要的字段. MySQL 查询优化器根据统计信息, 估算 SQL 要查找到结果集需要扫描读取的数据行数.
这个值非常直观显示 SQL 的效率好坏, 原则上 rows 越少越好.

Extra

EXplain 中的很多额外的信息会在 Extra 字段显示, 常见的有以下几种内容:

  • Using filesort
    当 Extra 中有 Using filesort 时, 表示 MySQL 需额外的排序操作, 不能通过索引顺序达到排序效果. 一般有 Using filesort, 都建议优化去掉, 因为这样的查询 CPU 资源消耗大.
    例如下面的例子:

    mysql> EXPLAIN SELECT * FROM order_info ORDER BY product_name \G
    *************************** 1. row ***************************
            id: 1
    select_type: SIMPLE
         table: order_info
    partitions: NULL
          type: index
    possible_keys: NULL
           key: user_product_detail_index
       key_len: 253
           ref: NULL
          rows: 9
      filtered: 100.00
         Extra: Using index; Using filesort
    1 row in set, 1 warning (0.00 sec)

我们的索引是

KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)

但是上面的查询中根据 product_name 来排序, 因此不能使用索引进行优化, 进而会产生 Using filesort.
如果我们将排序依据改为 ORDER BY user_id, product_name, 那么就不会出现 Using filesort 了. 例如:

mysql> EXPLAIN SELECT * FROM order_info ORDER BY user_id, product_name \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: index
possible_keys: NULL
          key: user_product_detail_index
      key_len: 253
          ref: NULL
         rows: 9
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.00 sec)
  • Using index
    "覆盖索引扫描", 表示查询在索引树中就可查找所需数据, 不用扫描表数据文件, 往往说明性能不错

  • Using temporary
    查询有使用临时表, 一般出现于排序, 分组和多表 join 的情况, 查询效率不高, 建议优化.

【相关推荐】

1. 免费mysql在线视频教程

2. MySQL最新手册教程

3. 布尔教育燕十八mysql入门视频教程

以上是MySQL 效能最佳化--Explain 使用介紹的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn