搜尋
首頁後端開發Python教學Python筆試題(2017最新)Python面試題筆試題

想找一份Python開發工作嗎?那你很可能得證明自己知道如何使用Python。以下這些問題涉及了與Python相關的許多技能,問題的焦點主要是語言本身,不是某個特定的套件或模組。每一個問題都可以擴充為一個教程,如果可能的話。某些問題甚至會涉及多個領域。

Python筆試題(2017最新)Python面試題筆試題

#我之前還沒有出過和這些題目一樣難的面試題,如果你能輕鬆回答出來的話,趕快去找份工作吧!以下是2017年最新Python筆試題

相關文章推薦:《2020年python面試題總結(最新)

問題1

到底什麼是Python?你可以在回答中與其他技術進行對比(也鼓勵這樣做)。

答案

以下是一些關鍵點:

Python是一種解釋型語言。這就是說,與C語言和C的衍生語言不同,Python程式碼在運行之前不需要編譯。其他解釋型語言還包括PHP和Ruby。

Python是動態型別語言,指的是你在宣告變數時,不需要說明變數的型別。你可以直接寫類似x=111和x="I'm a string"這樣的程式碼,程式不會報錯。

Python非常適合物件導向的程式設計(OOP),因為它支援透過組合(composition)與繼承(inheritance)的方式定義類別(class)。 Python中沒有存取說明符(access specifier,類似C++中的public和private),這麼設計的依據是「大家都是成年人了」。

在Python語言中,函數是第一類物件(first-class objects)。這指的是它們可以被指定給變量,函數既能返回函數類型,也可以接受函數作為輸入。類別(class)也是第一類物件。

Python程式碼編寫快,但是運行速度比編譯語言通常慢。還好Python允許加入基於C語言編寫的擴展,因此我們能夠優化程式碼,消除瓶頸,這點通常是可以實現的。 numpy就是一個很好地例子,它的運行速度真的非常快,因為很多算術運算其實不是透過Python實現的。

Python用途非常廣泛——網路應用,自動化,科學建模,大數據應用,等等。它也常被用作“膠水語言”,幫助其他語言和組件改善運作狀況。

Python讓困難的事情變得容易,因此程式設計師可以專注於演算法和資料結構的設計,而不用處理底層的細節。

問題2

補充缺少的程式碼

def print_directory_contents(sPath):
    """
    这个函数接受文件夹的名称作为输入参数,
    返回该文件夹中文件的路径,
    以及其包含文件夹中文件的路径。
    """
    # 补充代码

答案

def print_directory_contents(sPath):
    import os                                       
    for sChild in os.listdir(sPath):                
        sChildPath = os.path.join(sPath,sChild)
        if os.path.isdir(sChildPath):
            print_directory_contents(sChildPath)
        else:
            print sChildPath

特別要注意以下幾點:

命名規範要統一。如果樣本代碼中能夠看出命名規範,遵循其現有的規範。

遞迴函數需要遞迴並終止。確保你明白其中的原理,否則你將面臨無休無止的呼叫堆疊(callstack)。

我們使用os模組與作業系統進行交互,同時做到交互方式是可以跨平台的。你可以把程式碼寫成sChildPath = sPath + '/' + sChild,但這個在Windows系統上會出錯。

熟悉基礎模組是非常有價值的,但別想破腦袋都背下來,記住Google是你工作中的良師益友。

如果你不明白程式碼的預期功能,就大膽提問。

堅持KISS原則!保持簡單,不過腦子就能懂!

為什麼要提這個問題:

說明面試者對與作業系統互動的基礎知識

#遞迴真是太好用啦

##問題3

閱讀下面的程式碼,寫出A0,A1至An的最終值。

A0 = dict(zip(('a','b','c','d','e'),(1,2,3,4,5)))
A1 = range(10)
A2 = [i for i in A1 if i in A0]
A3 = [A0[s] for s in A0]
A4 = [i for i in A1 if i in A3]
A5 = {i:i*i for i in A1}
A6 = [[i,i*i] for i in A1]

答案

A0 = {'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4}
A1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
A2 = []
A3 = [1, 3, 2, 5, 4]
A4 = [1, 2, 3, 4, 5]
A5 = {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
A6 = [[0, 0], [1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36], [7, 49], [8, 64], [9, 81]]

為什麼提這個問題:

清單解析(list comprehension)十分節約時間,對很多人來說也是一個大的學習障礙。

如果你讀懂了這些程式碼,就很可能可以寫下正確地值。

其中部分程式碼故意寫的怪怪的。因為你共事的人之中也會有怪人。

問題4

Python和多執行緒(multi-threading)。這是個好主意碼?列舉一些讓Python程式碼以並行方式運作的方法。

答案#

Python并不支持真正意义上的多线程。Python中提供了多线程包,但是如果你想通过多线程提高代码的速度,使用多线程包并不是个好主意。Python中有一个被称为Global Interpreter Lock(GIL)的东西,它会确保任何时候你的多个线程中,只有一个被执行。线程的执行速度非常之快,会让你误以为线程是并行执行的,但是实际上都是轮流执行。经过GIL这一道关卡处理,会增加执行的开销。这意味着,如果你想提高代码的运行速度,使用threading包并不是一个很好的方法。

不过还是有很多理由促使我们使用threading包的。如果你想同时执行一些任务,而且不考虑效率问题,那么使用这个包是完全没问题的,而且也很方便。但是大部分情况下,并不是这么一回事,你会希望把多线程的部分外包给操作系统完成(通过开启多个进程),或者是某些调用你的Python代码的外部程序(例如Spark或Hadoop),又或者是你的Python代码调用的其他代码(例如,你可以在Python中调用C函数,用于处理开销较大的多线程工作)。

为什么提这个问题

因为GIL就是个混账东西(A-hole)。很多人花费大量的时间,试图寻找自己多线程代码中的瓶颈,直到他们明白GIL的存在。

问题5

你如何管理不同版本的代码?

答案

版本管理!被问到这个问题的时候,你应该要表现得很兴奋,甚至告诉他们你是如何使用Git(或是其他你最喜欢的工具)追踪自己和奶奶的书信往来。我偏向于使用Git作为版本控制系统(VCS),但还有其他的选择,比如subversion(SVN)。

为什么提这个问题:

因为没有版本控制的代码,就像没有杯子的咖啡。有时候我们需要写一些一次性的、可以随手扔掉的脚本,这种情况下不作版本控制没关系。但是如果你面对的是大量的代码,使用版本控制系统是有利的。版本控制能够帮你追踪谁对代码库做了什么操作;发现新引入了什么bug;管理你的软件的不同版本和发行版;在团队成员中分享源代码;部署及其他自动化处理。它能让你回滚到出现问题之前的版本,单凭这点就特别棒了。还有其他的好功能。怎么一个棒字了得!

问题6

下面代码会输出什么:

def f(x,l=[]):
    for i in range(x):
        l.append(i*i)
    print l
f(2)
f(3,[3,2,1])
f(3)

答案:

[0, 1]
[3, 2, 1, 0, 1, 4]
[0, 1, 0, 1, 4]

呃?

第一个函数调用十分明显,for循环先后将0和1添加至了空列表l中。l是变量的名字,指向内存中存储的一个列表。第二个函数调用在一块新的内存中创建了新的列表。l这时指向了新生成的列表。之后再往新列表中添加0、1、2和4。很棒吧。第三个函数调用的结果就有些奇怪了。它使用了之前内存地址中存储的旧列表。这就是为什么它的前两个元素是0和1了。

不明白的话就试着运行下面的代码吧:

l_mem = []
l = l_mem           # the first call
for i in range(2):
    l.append(i*i)
print l             # [0, 1]
l = [3,2,1]         # the second call
for i in range(3):
    l.append(i*i)
print l             # [3, 2, 1, 0, 1, 4]
l = l_mem           # the third call
for i in range(3):
    l.append(i*i)
print l             # [0, 1, 0, 1, 4]

问题7

“猴子补丁”(monkey patching)指的是什么?这种做法好吗?

答案

“猴子补丁”就是指,在函数或对象已经定义之后,再去改变它们的行为。

举个例子:

import datetime
datetime.datetime.now = lambda: datetime.datetime(2012, 12, 12)

大部分情况下,这是种很不好的做法 - 因为函数在代码库中的行为最好是都保持一致。打“猴子补丁”的原因可能是为了测试。mock包对实现这个目的很有帮助。

为什么提这个问题?

答对这个问题说明你对单元测试的方法有一定了解。你如果提到要避免“猴子补丁”,可以说明你不是那种喜欢花里胡哨代码的程序员(公司里就有这种人,跟他们共事真是糟糕透了),而是更注重可维护性。还记得KISS原则码?答对这个问题还说明你明白一些Python底层运作的方式,函数实际是如何存储、调用等等。

另外:如果你没读过mock模块的话,真的值得花时间读一读。这个模块非常有用。

问题8

这两个参数是什么意思:*args,**kwargs?我们为什么要使用它们?

答案

如果我们不确定要往函数中传入多少个参数,或者我们想往函数中以列表和元组的形式传参数时,那就使要用*args;如果我们不知道要往函数中传入多少个关键词参数,或者想传入字典的值作为关键词参数时,那就要使用**kwargs。args和kwargs这两个标识符是约定俗成的用法,你当然还可以用*bob和**billy,但是这样就并不太妥。

下面是具体的示例:

def f(*args,**kwargs): print args, kwargs
l = [1,2,3]
t = (4,5,6)
d = {'a':7,'b':8,'c':9}
f()
f(1,2,3)                    # (1, 2, 3) {}
f(1,2,3,"pythontab")           # (1, 2, 3, 'pythontab') {}
f(a=1,b=2,c=3)              # () {'a': 1, 'c': 3, 'b': 2}
f(a=1,b=2,c=3,zzz="hi")     # () {'a': 1, 'c': 3, 'b': 2, 'zzz': 'hi'}
f(1,2,3,a=1,b=2,c=3)        # (1, 2, 3) {'a': 1, 'c': 3, 'b': 2}
f(*l,**d)                   # (1, 2, 3) {'a': 7, 'c': 9, 'b': 8}
f(*t,**d)                   # (4, 5, 6) {'a': 7, 'c': 9, 'b': 8}
f(1,2,*t)                   # (1, 2, 4, 5, 6) {}
f(q="winning",**d)          # () {'a': 7, 'q': 'winning', 'c': 9, 'b': 8}
f(1,2,*t,q="winning",**d)   # (1, 2, 4, 5, 6) {'a': 7, 'q': 'winning', 'c': 9, 'b': 8}
def f2(arg1,arg2,*args,**kwargs): print arg1,arg2, args, kwargs
f2(1,2,3)                       # 1 2 (3,) {}
f2(1,2,3,"pythontab")              # 1 2 (3, 'pythontab') {}
f2(arg1=1,arg2=2,c=3)           # 1 2 () {'c': 3}
f2(arg1=1,arg2=2,c=3,zzz="hi")  # 1 2 () {'c': 3, 'zzz': 'hi'}
f2(1,2,3,a=1,b=2,c=3)           # 1 2 (3,) {'a': 1, 'c': 3, 'b': 2}
f2(*l,**d)                   # 1 2 (3,) {'a': 7, 'c': 9, 'b': 8}
f2(*t,**d)                   # 4 5 (6,) {'a': 7, 'c': 9, 'b': 8}
f2(1,2,*t)                   # 1 2 (4, 5, 6) {}
f2(1,1,q="winning",**d)      # 1 1 () {'a': 7, 'q': 'winning', 'c': 9, 'b': 8}
f2(1,2,*t,q="winning",**d)   # 1 2 (4, 5, 6) {'a': 7, 'q': 'winning', 'c': 9, 'b': 8}

为什么提这个问题?

有时候,我们需要往函数中传入未知个数的参数或关键词参数。有时候,我们也希望把参数或关键词参数储存起来,以备以后使用。有时候,仅仅是为了节省时间。

问题9

下面这些是什么意思:@classmethod, @staticmethod, @property?

回答背景知识

这些都是装饰器(decorator)。装饰器是一种特殊的函数,要么接受函数作为输入参数,并返回一个函数,要么接受一个类作为输入参数,并返回一个类。@标记是语法糖(syntactic sugar),可以让你以简单易读得方式装饰目标对象。

@my_decorator
def my_func(stuff):
    do_things
Is equivalent to
def my_func(stuff):
    do_things
my_func = my_decorator(my_func)

你可以在本网站上找到介绍装饰器工作原理的教材。

真正的答案

@classmethod, @staticmethod和@property这三个装饰器的使用对象是在类中定义的函数。下面的例子展示了它们的用法和行为:

class MyClass(object):
    def init(self):
        self._some_property = "properties are nice"
        self._some_other_property = "VERY nice"
    def normal_method(*args,**kwargs):
        print "calling normal_method({0},{1})".format(args,kwargs)
    @classmethod
    def class_method(*args,**kwargs):
        print "calling class_method({0},{1})".format(args,kwargs)
    @staticmethod
    def static_method(*args,**kwargs):
        print "calling static_method({0},{1})".format(args,kwargs)
    @property
    def some_property(self,*args,**kwargs):
        print "calling some_property getter({0},{1},{2})".format(self,args,kwargs)
        return self._some_property
    @some_property.setter
    def some_property(self,*args,**kwargs):
        print "calling some_property setter({0},{1},{2})".format(self,args,kwargs)
        self._some_property = args[0]
    @property
    def some_other_property(self,*args,**kwargs):
        print "calling some_other_property getter({0},{1},{2})".format(self,args,kwargs)
        return self._some_other_property
o = MyClass()
# 未装饰的方法还是正常的行为方式,需要当前的类实例(self)作为第一个参数。
o.normal_method 
# <bound method MyClass.normal_method of <main.MyClass instance at 0x7fdd2537ea28>>
o.normal_method() 
# normal_method((<main.MyClass instance at 0x7fdd2537ea28>,),{})
o.normal_method(1,2,x=3,y=4) 
# normal_method((<main.MyClass instance at 0x7fdd2537ea28>, 1, 2),{&#39;y&#39;: 4, &#39;x&#39;: 3})
# 类方法的第一个参数永远是该类
o.class_method
# <bound method classobj.class_method of <class main.MyClass at 0x7fdd2536a390>>
o.class_method()
# class_method((<class main.MyClass at 0x7fdd2536a390>,),{})
o.class_method(1,2,x=3,y=4)
# class_method((<class main.MyClass at 0x7fdd2536a390>, 1, 2),{&#39;y&#39;: 4, &#39;x&#39;: 3})
# 静态方法(static method)中除了你调用时传入的参数以外,没有其他的参数。
o.static_method
# <function static_method at 0x7fdd25375848>
o.static_method()
# static_method((),{})
o.static_method(1,2,x=3,y=4)
# static_method((1, 2),{&#39;y&#39;: 4, &#39;x&#39;: 3})
# @property是实现getter和setter方法的一种方式。直接调用它们是错误的。
# “只读”属性可以通过只定义getter方法,不定义setter方法实现。
o.some_property
# 调用some_property的getter(<main.MyClass instance at 0x7fb2b70877e8>,(),{})
# &#39;properties are nice&#39;
# “属性”是很好的功能
o.some_property()
# calling some_property getter(<main.MyClass instance at 0x7fb2b70877e8>,(),{})
# Traceback (most recent call last):
#   File "<stdin>", line 1, in <module>
# TypeError: &#39;str&#39; object is not callable
o.some_other_property
# calling some_other_property getter(<main.MyClass instance at 0x7fb2b70877e8>,(),{})
# &#39;VERY nice&#39;
# o.some_other_property()
# calling some_other_property getter(<main.MyClass instance at 0x7fb2b70877e8>,(),{})
# Traceback (most recent call last):
#   File "<stdin>", line 1, in <module>
# TypeError: &#39;str&#39; object is not callable
o.some_property = "pythontab"
# calling some_property setter(<main.MyClass object at 0x7fb2b7077890>,(&#39;pythontab&#39;,),{})
o.some_property
# calling some_property getter(<main.MyClass object at 0x7fb2b7077890>,(),{})
# &#39;pythontab&#39;
o.some_other_property = "pythontab.com"
# Traceback (most recent call last):
#   File "<stdin>", line 1, in <module>
# AttributeError: can&#39;t set attribute
o.some_other_property
# calling some_other_property getter(<main.MyClass object at 0x7fb2b7077890>,(),{})

问题10

简要描述Python的垃圾回收机制(garbage collection)。

答案

这里能说的很多。你应该提到下面几个主要的点:

Python在内存中存储了每个对象的引用计数(reference count)。如果计数值变成0,那么相应的对象就会小时,分配给该对象的内存就会释放出来用作他用。

偶尔也会出现引用循环(reference cycle)。垃圾回收器会定时寻找这个循环,并将其回收。举个例子,假设有两个对象o1和o2,而且符合o1.x == o2和o2.x == o1这两个条件。如果o1和o2没有其他代码引用,那么它们就不应该继续存在。但它们的引用计数都是1。

Python中使用了某些启发式算法(heuristics)来加速垃圾回收。例如,越晚创建的对象更有可能被回收。对象被创建之后,垃圾回收器会分配它们所属的代(generation)。每个对象都会被分配一个代,而被分配更年轻代的对象是优先被处理的。

问题11

将下面的函数按照执行效率高低排序。它们都接受由0至1之间的数字构成的列表作为输入。这个列表可以很长。一个输入列表的示例如下:[random.random() for i in range(100000)]。你如何证明自己的答案是正确的。

def f1(lIn):
    l1 = sorted(lIn)
    l2 = [i for i in l1 if i<0.5]
    return [i*i for i in l2]
def f2(lIn):
    l1 = [i for i in lIn if i<0.5]
    l2 = sorted(l1)
    return [i*i for i in l2]
def f3(lIn):
    l1 = [i*i for i in lIn]
    l2 = sorted(l1)
    return [i for i in l1 if i<(0.5*0.5)]

答案

按执行效率从高到低排列:f2、f1和f3。要证明这个答案是对的,你应该知道如何分析自己代码的性能。Python中有一个很好的程序分析包,可以满足这个需求。

import cProfile
lIn = [random.random() for i in range(100000)]
cProfile.run(&#39;f1(lIn)&#39;)
cProfile.run(&#39;f2(lIn)&#39;)
cProfile.run(&#39;f3(lIn)&#39;)

为了向大家进行完整地说明,下面我们给出上述分析代码的输出结果:

>>> cProfile.run(&#39;f1(lIn)&#39;)
         4 function calls in 0.045 seconds
   Ordered by: standard name
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.009    0.009    0.044    0.044 <stdin>:1(f1)
        1    0.001    0.001    0.045    0.045 <string>:1(<module>)
        1    0.000    0.000    0.000    0.000 {method &#39;disable&#39; of &#39;_lsprof.Profiler&#39; objects}
        1    0.035    0.035    0.035    0.035 {sorted}
>>> cProfile.run(&#39;f2(lIn)&#39;)
         4 function calls in 0.024 seconds
   Ordered by: standard name
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.008    0.008    0.023    0.023 <stdin>:1(f2)
        1    0.001    0.001    0.024    0.024 <string>:1(<module>)
        1    0.000    0.000    0.000    0.000 {method &#39;disable&#39; of &#39;_lsprof.Profiler&#39; objects}
        1    0.016    0.016    0.016    0.016 {sorted}
>>> cProfile.run(&#39;f3(lIn)&#39;)
         4 function calls in 0.055 seconds
   Ordered by: standard name
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.016    0.016    0.054    0.054 <stdin>:1(f3)
        1    0.001    0.001    0.055    0.055 <string>:1(<module>)
        1    0.000    0.000    0.000    0.000 {method &#39;disable&#39; of &#39;_lsprof.Profiler&#39; objects}
        1    0.038    0.038    0.038    0.038 {sorted}

为什么提这个问题?

定位并避免代码瓶颈是非常有价值的技能。想要编写许多高效的代码,最终都要回答常识上来——在上面的例子中,如果列表较小的话,很明显是先进行排序更快,因此如果你可以在排序前先进行筛选,那通常都是比较好的做法。其他不显而易见的问题仍然可以通过恰当的工具来定位。因此了解这些工具是有好处的。

相关学习推荐:python视频教程

以上是Python筆試題(2017最新)Python面試題筆試題的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python:遊戲,Guis等Python:遊戲,Guis等Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Apr 02, 2025 am 07:12 AM

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。