泛型是Java中一個非常重要的知識點,在Java集合類別框架中廣泛應用。本文我們將從零開始來看Java泛型的設計,將會牽涉到通配符處理,以及讓人苦惱的類型擦除。
# 我們先定義一個簡單的Box類別:
public class Box { private String object; public void set(String object) { this.object = object; } public String get() { return object; } }
這是最常見的做法,這樣做的一個壞處是Box裡面現在只能裝入String類型的元素,今後如果我們需要裝入Integer等其他類型的元素,還必須要另外重寫一個Box,程式碼得不到復用,使用泛型可以很好的解決這個問題。
public class Box<T> { // T stands for "Type" private T t; public void set(T t) { this.t = t; } public T get() { return t; } }
這樣我們的Box類別便可以重複使用,我們可以將T替換成任何我們想要的類型:
Box<Integer> integerBox = new Box<Integer>(); Box<Double> doubleBox = new Box<Double>(); Box<String> stringBox = new Box<String>();
# 看完了泛型類,接下來我們來了解一下泛型方法。宣告一個泛型方法很簡單,只要在回傳型別前面加上一個類似b56561a2c0bc639cf0044c0859afb88f的形式就行了:
public class Util { public static <K, V> boolean compare(Pair<K, V> p1, Pair<K, V> p2) { return p1.getKey().equals(p2.getKey()) && p1.getValue().equals(p2.getValue()); } } public class Pair<K, V> { private K key; private V value; public Pair(K key, V value) { this.key = key; this.value = value; } public void setKey(K key) { this.key = key; } public void setValue(V value) { this.value = value; } public K getKey() { return key; } public V getValue() { return value; } }
我們可以像下面這樣去呼叫泛型方法:
Pair<Integer, String> p1 = new Pair<>(1, "apple"); Pair<Integer, String> p2 = new Pair<>(2, "pear"); boolean same = Util.<Integer, String>compare(p1, p2);
或在Java1.7/1.8利用type inference,讓Java自動推導出對應的型別參數:
Pair<Integer, String> p1 = new Pair<>(1, "apple"); Pair<Integer, String> p2 = new Pair<>(2, "pear"); boolean same = Util.compare(p1, p2);
# 現在我們要實作這樣一個功能,找出一個泛型陣列中大於某個特定元素的個數,我們可以這樣實作:
public static <T> int countGreaterThan(T[] anArray, T elem) { int count = 0; for (T e : anArray) if (e > elem) // compiler error ++count; return count; }
但是這樣很明顯是錯誤的,因為除了short, int, double, long, float, byte, char等原始類型,其他的類別並不一定能使用運算符>,所以編譯器報錯,那怎麼解決這個問題呢?答案是使用邊界符。
public interface Comparable<T> { public int compareTo(T o); }
做一個類似下面這樣的聲明,這樣就等於告訴編譯器類型參數T代表的都是實作了Comparable介面的類,這樣等於告訴編譯器它們都至少實作了compareTo方法。
public static <T extends Comparable<T>> int countGreaterThan(T[] anArray, T elem) { int count = 0; for (T e : anArray) if (e.compareTo(elem) > 0) ++count; return count; }
在了解通配符之前,我們首先必須澄清一個概念,還是藉用我們上面定義的Box類,假設我們添加一個這樣的方法:
public void boxTest(Box<Number> n) { /* ... */ }
那麼現在Boxc8f01a3f8889dcf657849dd45bc0fc4c n允許接受什麼類型的參數?我們是否能夠傳入Boxc0f559cc8d56b43654fcbe4aa9df7b4a或Boxeafb63d086dd6c9bd19609d76bcc2869呢?答案是否定的,雖然Integer和Double是Number的子類,但是在泛型中Boxc0f559cc8d56b43654fcbe4aa9df7b4a或者Boxeafb63d086dd6c9bd19609d76bcc2869與Boxc8f01a3f8889dcf657849dd45bc0fc4c之間並沒有任何的關係。這一點非常重要,接下來我們透過一個完整的例子來加深理解。
首先我們先定義幾個簡單的類,下面我們將用到它:
class Fruit {} class Apple extends Fruit {} class Orange extends Fruit {}
在下面這個範例中,我們建立了一個泛型類別Reader,然後在f1()中當我們嘗試Fruit f = fruitReader.readExact(apples);編譯器會報錯,因為Liste4dae6b035208b28264d9169d0b1fee3與List463277d9ebc274bcf30ecc27cb72790a之間並沒有任何的關係。
public class GenericReading { static List<Apple> apples = Arrays.asList(new Apple()); static List<Fruit> fruit = Arrays.asList(new Fruit()); static class Reader<T> { T readExact(List<T> list) { return list.get(0); } } static void f1() { Reader<Fruit> fruitReader = new Reader<Fruit>(); // Errors: List<Fruit> cannot be applied to List<Apple>. // Fruit f = fruitReader.readExact(apples); } public static void main(String[] args) { f1(); } }
但是按照我們通常的思維習慣,Apple和Fruit之間肯定是存在聯繫,然而編譯器卻無法識別,那怎麼在泛型程式碼中解決這個問題呢?我們可以透過使用通配符來解決這個問題:
static class CovariantReader<T> { T readCovariant(List<? extends T> list) { return list.get(0); } } static void f2() { CovariantReader<Fruit> fruitReader = new CovariantReader<Fruit>(); Fruit f = fruitReader.readCovariant(fruit); Fruit a = fruitReader.readCovariant(apples); } public static void main(String[] args) { f2(); }
這樣就相當與告訴編譯器, fruitReader的readCovariant方法接受的參數只要是滿足Fruit的子類就行(包括Fruit自身),這樣子類和父類之間的關係也就關聯上了。
# 上面我們看到了類似d203bb1ae585225d4838a2b7e3d0503e的用法,利用它我們可以從list裡面get元素,那麼我們可不可以往list裡面add元素呢?讓我們來試試看:
public class GenericsAndCovariance { public static void main(String[] args) { // Wildcards allow covariance: List<? extends Fruit> flist = new ArrayList<Apple>(); // Compile Error: can't add any type of object: // flist.add(new Apple()) // flist.add(new Orange()) // flist.add(new Fruit()) // flist.add(new Object()) flist.add(null); // Legal but uninteresting // We Know that it returns at least Fruit: Fruit f = flist.get(0); } }
答案是否定,Java編譯器不允許我們這麼做,為什麼呢?對於這個問題我們不妨從編譯器的角度去考慮。因為List57019040ccef885c8e3bd8f9deb31922 flist它本身可以有多種意義:
List<? extends Fruit> flist = new ArrayList<Fruit>(); List<? extends Fruit> flist = new ArrayList<Apple>(); List<? extends Fruit> flist = new ArrayList<Orange>();
當我們嘗試add一個Apple的時候,flist可能指向new ArrayListb6d994c109c3fd26f54aa9d5ff75e102();
當我們嘗試add一個Orange的時候,flist可能指向new ArrayList463277d9ebc274bcf30ecc27cb72790a();
當我們嘗試add一個Fruit的時候,這個Fruit可以是任何類型的Fruit,而flist可能只想某種特定類型的Fruit,編譯器無法辨識所以會報錯。
所以對於實現了d203bb1ae585225d4838a2b7e3d0503e的集合類別只能將它視為Producer向外提供(get)元素,而不能作為Consumer來對外獲取(add)元素。
如果我們要add元素該怎麼做呢?可以使用117c5a0bdb71ea9a9d0c2b99b03abe3e:
public class GenericWriting { static List<Apple> apples = new ArrayList<Apple>(); static List<Fruit> fruit = new ArrayList<Fruit>(); static <T> void writeExact(List<T> list, T item) { list.add(item); } static void f1() { writeExact(apples, new Apple()); writeExact(fruit, new Apple()); } static <T> void writeWithWildcard(List<? super T> list, T item) { list.add(item) } static void f2() { writeWithWildcard(apples, new Apple()); writeWithWildcard(fruit, new Apple()); } public static void main(String[] args) { f1(); f2(); } }
这样我们可以往容器里面添加元素了,但是使用super的坏处是以后不能get容器里面的元素了,原因很简单,我们继续从编译器的角度考虑这个问题,对于List72b4226105aa1d07ec3b6e98f565c59e list,它可以有下面几种含义:
List<? super Apple> list = new ArrayList<Apple>(); List<? super Apple> list = new ArrayList<Fruit>(); List<? super Apple> list = new ArrayList<Object>();
当我们尝试通过list来get一个Apple的时候,可能会get得到一个Fruit,这个Fruit可以是Orange等其他类型的Fruit。
根据上面的例子,我们可以总结出一条规律,”Producer Extends, Consumer Super”:
“Producer Extends” – 如果你需要一个只读List,用它来produce T,那么使用? extends T。
“Consumer Super” – 如果你需要一个只写List,用它来consume T,那么使用? super T。
如果需要同时读取以及写入,那么我们就不能使用通配符了。
如何阅读过一些Java集合类的源码,可以发现通常我们会将两者结合起来一起用,比如像下面这样:
public class Collections { public static <T> void copy(List<? super T> dest, List<? extends T> src) { for (int i=0; i<src.size(); i++) dest.set(i, src.get(i)); } }
Java泛型中最令人苦恼的地方或许就是类型擦除了,特别是对于有C++经验的程序员。类型擦除就是说Java泛型只能用于在编译期间的静态类型检查,然后编译器生成的代码会擦除相应的类型信息,这样到了运行期间实际上JVM根本就知道泛型所代表的具体类型。这样做的目的是因为Java泛型是1.5之后才被引入的,为了保持向下的兼容性,所以只能做类型擦除来兼容以前的非泛型代码。对于这一点,如果阅读Java集合框架的源码,可以发现有些类其实并不支持泛型。
说了这么多,那么泛型擦除到底是什么意思呢?我们先来看一下下面这个简单的例子:
public class Node<T> { private T data; private Node<T> next; public Node(T data, Node<T> next) } this.data = data; this.next = next; } public T getData() { return data; } // ... }
编译器做完相应的类型检查之后,实际上到了运行期间上面这段代码实际上将转换成:
public class Node { private Object data; private Node next; public Node(Object data, Node next) { this.data = data; this.next = next; } public Object getData() { return data; } // ... }
这意味着不管我们声明Nodef7e83be87db5cd2d9a8a0b8117b38cd4还是Nodec0f559cc8d56b43654fcbe4aa9df7b4a,到了运行期间,JVM统统视为Nodea87fdacec66f0909fc0757c19f2d2b1d。有没有什么办法可以解决这个问题呢?这就需要我们自己重新设置bounds了,将上面的代码修改成下面这样:
public class Node<T extends Comparable<T>> { private T data; private Node<T> next; public Node(T data, Node<T> next) { this.data = data; this.next = next; } public T getData() { return data; } // ... }
这样编译器就会将T出现的地方替换成Comparable而不再是默认的Object了:
public class Node { private Comparable data; private Node next; public Node(Comparable data, Node next) { this.data = data; this.next = next; } public Comparable getData() { return data; } // ... }
上面的概念或许还是比较好理解,但其实泛型擦除带来的问题远远不止这些,接下来我们系统地来看一下类型擦除所带来的一些问题,有些问题在C++的泛型中可能不会遇见,但是在Java中却需要格外小心。
在Java中不允许创建泛型数组,类似下面这样的做法编译器会报错:
List<Integer>[] arrayOfLists = new List<Integer>[2]; // compile-time error
为什么编译器不支持上面这样的做法呢?继续使用逆向思维,我们站在编译器的角度来考虑这个问题。
我们先来看一下下面这个例子:
Object[] strings = new String[2]; strings[0] = "hi"; // OK strings[1] = 100; // An ArrayStoreException is thrown.
对于上面这段代码还是很好理解,字符串数组不能存放整型元素,而且这样的错误往往要等到代码运行的时候才能发现,编译器是无法识别的。接下来我们再来看一下假设Java支持泛型数组的创建会出现什么后果:
Object[] stringLists = new List<String>[]; // compiler error, but pretend it's allowed stringLists[0] = new ArrayList<String>(); // OK // An ArrayStoreException should be thrown, but the runtime can't detect it. stringLists[1] = new ArrayList<Integer>();
假设我们支持泛型数组的创建,由于运行时期类型信息已经被擦除,JVM实际上根本就不知道new ArrayListf7e83be87db5cd2d9a8a0b8117b38cd4()和new ArrayListc0f559cc8d56b43654fcbe4aa9df7b4a()的区别。类似这样的错误假如出现才实际的应用场景中,将非常难以察觉。
如果你对上面这一点还抱有怀疑的话,可以尝试运行下面这段代码:
public class ErasedTypeEquivalence { public static void main(String[] args) { Class c1 = new ArrayList<String>().getClass(); Class c2 = new ArrayList<Integer>().getClass(); System.out.println(c1 == c2); // true } }
继续复用我们上面的Node的类,对于泛型代码,Java编译器实际上还会偷偷帮我们实现一个Bridge method。
public class Node<T> { public T data; public Node(T data) { this.data = data; } public void setData(T data) { System.out.println("Node.setData"); this.data = data; } } public class MyNode extends Node<Integer> { public MyNode(Integer data) { super(data); } public void setData(Integer data) { System.out.println("MyNode.setData"); super.setData(data); } }
看完上面的分析之后,你可能会认为在类型擦除后,编译器会将Node和MyNode变成下面这样:
public class Node { public Object data; public Node(Object data) { this.data = data; } public void setData(Object data) { System.out.println("Node.setData"); this.data = data; } } public class MyNode extends Node { public MyNode(Integer data) { super(data); } public void setData(Integer data) { System.out.println("MyNode.setData"); super.setData(data); } }
实际上不是这样的,我们先来看一下下面这段代码,这段代码运行的时候会抛出ClassCastException异常,提示String无法转换成Integer:
MyNode mn = new MyNode(5); Node n = mn; // A raw type - compiler throws an unchecked warning n.setData("Hello"); // Causes a ClassCastException to be thrown. // Integer x = mn.data;
如果按照我们上面生成的代码,运行到第3行的时候不应该报错(注意我注释掉了第4行),因为MyNode中不存在setData(String data)方法,所以只能调用父类Node的setData(Object data)方法,既然这样上面的第3行代码不应该报错,因为String当然可以转换成Object了,那ClassCastException到底是怎么抛出的?
实际上Java编译器对上面代码自动还做了一个处理:
class MyNode extends Node { // Bridge method generated by the compiler public void setData(Object data) { setData((Integer) data); } public void setData(Integer data) { System.out.println("MyNode.setData"); super.setData(data); } // ... }
这也就是为什么上面会报错的原因了,setData((Integer) data);的时候String无法转换成Integer。所以上面第2行编译器提示unchecked warning的时候,我们不能选择忽略,不然要等到运行期间才能发现异常。如果我们一开始加上Nodec0f559cc8d56b43654fcbe4aa9df7b4a n = mn就好了,这样编译器就可以提前帮我们发现错误。
正如我们上面提到的,Java泛型很大程度上只能提供静态类型检查,然后类型的信息就会被擦除,所以像下面这样利用类型参数创建实例的做法编译器不会通过:
public static <E> void append(List<E> list) { E elem = new E(); // compile-time error list.add(elem); }
但是如果某些场景我们想要需要利用类型参数创建实例,我们应该怎么做呢?可以利用反射解决这个问题:
public static <E> void append(List<E> list, Class<E> cls) throws Exception { E elem = cls.newInstance(); // OK list.add(elem); }
我们可以像下面这样调用:
List<String> ls = new ArrayList<>(); append(ls, String.class);
实际上对于上面这个问题,还可以采用Factory和Template两种设计模式解决,感兴趣的朋友不妨去看一下Thinking in Java中第15章中关于Creating instance of types(英文版第664页)的讲解,这里我们就不深入了。
我们无法对泛型代码直接使用instanceof关键字,因为Java编译器在生成代码的时候会擦除所有相关泛型的类型信息,正如我们上面验证过的JVM在运行时期无法识别出ArrayListc0f559cc8d56b43654fcbe4aa9df7b4a和ArrayListf7e83be87db5cd2d9a8a0b8117b38cd4的之间的区别:
public static <E> void rtti(List<E> list) { if (list instanceof ArrayList<Integer>) { // compile-time error // ... } } => { ArrayList<Integer>, ArrayList<String>, LinkedList<Character>, ... }
和上面一样,我们可以使用通配符重新设置bounds来解决这个问题:
public static void rtti(List<?> list) { if (list instanceof ArrayList<?>) { // OK; instanceof requires a reifiable type // ... } }
以上是對Java 泛型的詳細解的詳細內容。更多資訊請關注PHP中文網其他相關文章!