前言
正規表示式的基礎知識就不說了,有興趣的可以點擊這裡,提取一般分兩種情況,一種是提取在文字中提取單一位置的字串,另一種是提取連續多個位置的字串。日誌分析會遇到這種情況,下面我會分別講一下對應的方法。
一、單一位置的字串提取
這種情況我們可以使用(.+?)這個正規表示式來提取。 舉例,一個字串"a123b",如果我們想提取ab之間的值123,可以使用findall配合正規表示式,這樣會傳回一個包含所以符合情況的list。
程式碼如下:
import re str = "a123b" print re.findall(r"a(.+?)b",str)# 输出['123']
#1.1貪婪和非貪婪匹配
如果我們有一個字串”a123b456b”,如果我們想匹配a和最後一個b之間的所有值而不是a和第一個出現的b之間的值,可以用?來控制正則貪婪和非貪婪匹配的情況。
程式碼如下:
import re str = "a123b456b" print re.findall(r"a(.+?)b", str) #输出['123']#?控制只匹配0或1个,所以只会输出和最近的b之间的匹配情况 print re.findall(r"a(.+)b", str) #输出['123b456'] print re.findall(r"a(.*)b", str) #输出['123b456']
#1.2多行符合
如果你要多行匹配,那麼需要加上re.S和re.M標誌. 加上re.S後。將會匹配換行符,預設.不會匹配換行符。
程式碼如下:
str = "a23b\na34b" re.findall(r"a(\d+)b.+a(\d+)b", str) #输出[] #因为不能处理str中间有\n换行的情况 re.findall(r"a(\d+)b.+a(\d+)b", str, re.S) #s输出[('23', '34')]
加上re.M後,^$標誌將會符合每一行,預設^和$只會匹配第一行。
程式碼如下:
str = "a23b\na34b" re.findall(r"^a(\d+)b", str) #输出['23'] re.findall(r"^a(\d+)b", str, re.M) #输出['23', '34']
#二、連續多個位置的字串擷取
#這種情況我們可以使用
(?P<name>…)
這個正規表示式來提取。舉例,如果我們有一行webserver的access日誌:
'192.168.0.1 25/Oct/2012:14:46:34 "GET /api HTTP/1.1" 200 44 "http://abc.com/search" "Mozilla/5.0"'
,我們想提取這行日誌裡面所有的內容,可以寫多個
(?P<name>expr)
來提取,其中name可以更改為你為該位置字串命名的變量,expr改成提取位置的正則即可。
程式碼如下:
import re line ='192.168.0.1 25/Oct/2012:14:46:34 "GET /api HTTP/1.1" 200 44 "http://abc.com/search" "Mozilla/5.0"' reg = re.compile('^(?P<remote_ip>[^ ]*) (?P<date>[^ ]*) "(?P<request>[^"]*)" (?P<status>[^ ]*) (?P<size>[^ ]*) "(?P<referrer>[^"]*)" "(?P<user_agent>[^"]*)"') regMatch = reg.match(line) linebits = regMatch.groupdict() print linebits for k, v in linebits.items() : print k+": "+v
輸出的結果為:
status: 200 referrer: request: GET /api HTTP/1.1 user_agent: Mozilla/5.0 date: 25/Oct/2012:14:46:34size: 44 remote_ip: 192.168.0.1
總結
以上就是這篇文章的全部內容了,希望本文的內容對大家的學習或工作能帶來一定的幫助,如果有疑問大家可以留言交流。
以上是python中使用正規表示式提取字串的方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

使用NumPy創建多維數組可以通過以下步驟實現:1)使用numpy.array()函數創建數組,例如np.array([[1,2,3],[4,5,6]])創建2D數組;2)使用np.zeros(),np.ones(),np.random.random()等函數創建特定值填充的數組;3)理解數組的shape和size屬性,確保子數組長度一致,避免錯誤;4)使用np.reshape()函數改變數組形狀;5)注意內存使用,確保代碼清晰高效。

播放innumpyisamethodtoperformoperationsonArraySofDifferentsHapesbyAutapityallate AligningThem.itSimplifififiesCode,增強可讀性,和Boostsperformance.Shere'shore'showitworks:1)較小的ArraySaraySaraysAraySaraySaraySaraySarePaddedDedWiteWithOnestOmatchDimentions.2)

forpythondataTastorage,choselistsforflexibilityWithMixedDatatypes,array.ArrayFormeMory-effficityHomogeneousnumericalData,andnumpyArraysForAdvancedNumericalComputing.listsareversareversareversareversArversatilebutlessEbutlesseftlesseftlesseftlessforefforefforefforefforefforefforefforefforefforlargenumerdataSets; arrayoffray.array.array.array.array.array.ersersamiddreddregro

Pythonlistsarebetterthanarraysformanagingdiversedatatypes.1)Listscanholdelementsofdifferenttypes,2)theyaredynamic,allowingeasyadditionsandremovals,3)theyofferintuitiveoperationslikeslicing,but4)theyarelessmemory-efficientandslowerforlargedatasets.

toAccesselementsInapyThonArray,useIndIndexing:my_array [2] accessEsthethEthErlement,returning.3.pythonosezero opitedEndexing.1)usepositiveandnegativeIndexing:my_list [0] fortefirstElment,fortefirstelement,my_list,my_list [-1] fornelast.2] forselast.2)

文章討論了由於語法歧義而導致的Python中元組理解的不可能。建議使用tuple()與發電機表達式使用tuple()有效地創建元組。 (159個字符)

本文解釋了Python中的模塊和包裝,它們的差異和用法。模塊是單個文件,而軟件包是帶有__init__.py文件的目錄,在層次上組織相關模塊。

文章討論了Python中的Docstrings,其用法和收益。主要問題:Docstrings對於代碼文檔和可訪問性的重要性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3 Linux新版
SublimeText3 Linux最新版

WebStorm Mac版
好用的JavaScript開發工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具