搜尋
首頁後端開發Python教學使用Python寫CUDA程式的方法詳細介紹

下面小編就為大家帶來一篇使用Python寫CUDA程式的方法。小編覺得蠻不錯的,現在就分享給大家,也給大家做個參考。一起跟著小編過來看看吧

使用Python寫CUDA程式有兩種方式:

##* Numba

* PyCUDA

numbapro現在已經不建議使用了,功能被分割並分別整合到accelerate和Numba了。

範例

numba

Numba透過及時編譯機制( JIT)最佳化Python程式碼,Numba可以針對本機的硬體環境進行最佳化,同時支援CPU和GPU的最佳化,並且可以和Numpy集成,使Python程式碼可以在GPU上運行,只需在

函數上方加上相關的指令標記,

如下:#

import numpy as np 
from timeit import default_timer as timer
from numba import vectorize
@vectorize(["float32(float32, float32)"], target='cuda')
def vectorAdd(a, b):
  return a + b
def main():
  N = 320000000
  A = np.ones(N, dtype=np.float32 )
  B = np.ones(N, dtype=np.float32 )
  C = np.zeros(N, dtype=np.float32 )
  start = timer()
  C = vectorAdd(A, B)
  vectorAdd_time = timer() - start
  print("c[:5] = " + str(C[:5]))
  print("c[-5:] = " + str(C[-5:]))
  print("vectorAdd took %f seconds " % vectorAdd_time)
if name == 'main':
  main()

PyCUDA

PyCUDA的核心函數(kernel)其實就是使用C/C++編寫的,透過動態編譯為GPU微碼,Python程式碼與GPU程式碼進行交互,如下所示:

import pycuda.autoinit
import pycuda.driver as drv
import numpy as np
from timeit import default_timer as timer
from pycuda.compiler import SourceModule
mod = SourceModule("""
global void func(float *a, float *b, size_t N)
{
 const int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i >= N)
 {
  return;
 }
 float temp_a = a[i];
 float temp_b = b[i];
 a[i] = (temp_a * 10 + 2 ) * ((temp_b + 2) * 10 - 5 ) * 5;
 // a[i] = a[i] + b[i];
}
""")
func = mod.get_function("func")  
def test(N):
  # N = 1024 * 1024 * 90  # float: 4M = 1024 * 1024
  print("N = %d" % N)
  N = np.int32(N)
  a = np.random.randn(N).astype(np.float32)
  b = np.random.randn(N).astype(np.float32)  
  # copy a to aa
  aa = np.empty_like(a)
  aa[:] = a
  # GPU run
  nTheads = 256
  nBlocks = int( ( N + nTheads - 1 ) / nTheads )
  start = timer()
  func(
      drv.InOut(a), drv.In(b), N,
      block=( nTheads, 1, 1 ), grid=( nBlocks, 1 ) )
  run_time = timer() - start 
  print("gpu run time %f seconds " % run_time)  
  # cpu run
  start = timer()
  aa = (aa * 10 + 2 ) * ((b + 2) * 10 - 5 ) * 5
  run_time = timer() - start 
  print("cpu run time %f seconds " % run_time) 
  # check result
  r = a - aa
  print( min(r), max(r) )
def main():
 for n in range(1, 10):
  N = 1024 * 1024 * (n * 10)
  print("------------%d---------------" % n)
  test(N)
if name == 'main':
  main()

對比

numba使用一些指令標記某些函數來加速(也可以使用Python編寫內核函數),這點類似OpenACC,而PyCUDA需要自己寫kernel ,在運行時進行編譯,底層是基於C/C++實現的。透過測試,這兩種方式的加速比基本上差不多。但是,numba更像黑盒,不知道內部到底做了什麼,而PyCUDA就顯得很直觀。因此,這兩種方式有不同的應用:

* 如果只是為了加速自己的演算法而不關心CUDA編程,那麼直接使用numba會更好。

* 如果為了學習、研究CUDA程式或實驗某一個演算法在CUDA下的可行性,那麼就使用PyCUDA。

* 如果寫的程式將來要移植到C/C++,那麼就一定要使用PyCUDA了,因為使用PyCUDA寫的kernel本身就是用CUDA C/C++寫的。

以上是使用Python寫CUDA程式的方法詳細介紹的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
在Python陣列上可以執行哪些常見操作?在Python陣列上可以執行哪些常見操作?Apr 26, 2025 am 12:22 AM

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

在哪些類型的應用程序中,Numpy數組常用?在哪些類型的應用程序中,Numpy數組常用?Apr 26, 2025 am 12:13 AM

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

您什麼時候選擇在Python中的列表上使用數組?您什麼時候選擇在Python中的列表上使用數組?Apr 26, 2025 am 12:12 AM

useanArray.ArarayoveralistinpythonwhendeAlingwithHomoGeneData,performance-Caliticalcode,orinterfacingwithccode.1)同質性data:arraysSaveMemorywithTypedElements.2)績效code-performance-calitialcode-calliginal-clitical-clitical-calligation-Critical-Code:Arraysofferferbetterperbetterperperformanceformanceformancefornallancefornalumericalical.3)

所有列表操作是否由數組支持,反之亦然?為什麼或為什麼不呢?所有列表操作是否由數組支持,反之亦然?為什麼或為什麼不呢?Apr 26, 2025 am 12:05 AM

不,notalllistoperationsareSupportedByArrays,andviceversa.1)arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,wheremactsperformance.2)listssdonotguaranteeconecontanttanttanttanttanttanttanttanttanttimecomplecomecomplecomecomecomecomecomecomplecomectacccesslectaccesslecrectaccesslerikearraysodo。

您如何在python列表中訪問元素?您如何在python列表中訪問元素?Apr 26, 2025 am 12:03 AM

toAccesselementsInapythonlist,useIndIndexing,負索引,切片,口頭化。 1)indexingStartSat0.2)否定indexingAccessesessessessesfomtheend.3)slicingextractsportions.4)iterationerationUsistorationUsisturessoreTionsforloopsoreNumeratorseforeporloopsorenumerate.alwaysCheckListListListListlentePtotoVoidToavoIndexIndexIndexIndexIndexIndExerror。

Python的科學計算中如何使用陣列?Python的科學計算中如何使用陣列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何處理同一系統上的不同Python版本?您如何處理同一系統上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

與標準Python陣列相比,使用Numpy數組的一些優點是什麼?與標準Python陣列相比,使用Numpy數組的一些優點是什麼?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具