之所以說”使用”而不是”實現”,是因為python的相關類別庫已經幫我們實現了具體算法,而我們只要學會使用就可以了。隨著對技術的逐漸掌握及積累,當類別庫中的演算法已經無法滿足自身需求的時候,我們也可以嘗試透過自己的方式實作各種演算法。
言歸正傳,什麼是」最小平方法」呢?
定義:最小平方法(又稱最小平方法)是一種數學最佳化技術,它透過最小化誤差的平方和尋找資料的最佳函數來匹配。
作用:利用最小平方法可以簡單地求得未知的數據,並使得這些求得的數據與實際數據之間誤差的平方和為最小。
原則:以」殘差平方與最小」確定直線位置(在數理統計中,殘差是指實際觀察值與估計值之間的差)
基本想法:對於一元線性迴歸模型, 假設從總體中獲取了n組觀察值(X1,Y1),(X2,Y2), …,(Xn,Yn),對於平面中的這n個點,可以使用無數條曲線來擬合。而線性迴歸就是要求樣本迴歸函數盡可能好地擬合這組值,也就是說,這條直線應該盡可能的處於樣本資料的中心位置。因此,選擇最佳擬合曲線的標準可以確定為:使總的擬合誤差(即總殘差)達到最小。
實作程式碼如下,程式碼中已經詳細的給了註解:
##最小二乘法 import numpy as np ##科学计算库 import scipy as sp ##在numpy基础上实现的部分算法库 import matplotlib.pyplot as plt ##绘图库 from scipy.optimize import leastsq ##引入最小二乘法算法 ''' 设置样本数据,真实数据需要在这里处理 ''' ##样本数据(Xi,Yi),需要转换成数组(列表)形式 Xi=np.array([6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2]) Yi=np.array([5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3]) ''' 设定拟合函数和偏差函数 函数的形状确定过程: 1.先画样本图像 2.根据样本图像大致形状确定函数形式(直线、抛物线、正弦余弦等) ''' ##需要拟合的函数func :指定函数的形状 def func(p,x): k,b=p return k*x+b ##偏差函数:x,y都是列表:这里的x,y更上面的Xi,Yi中是一一对应的 def error(p,x,y): return func(p,x)-y ''' 主要部分:附带部分说明 1.leastsq函数的返回值tuple,第一个元素是求解结果,第二个是求解的代价值(个人理解) 2.官网的原话(第二个值):Value of the cost function at the solution 3.实例:Para=>(array([ 0.61349535, 1.79409255]), 3) 4.返回值元组中第一个值的数量跟需要求解的参数的数量一致 ''' #k,b的初始值,可以任意设定,经过几次试验,发现p0的值会影响cost的值:Para[1] p0=[1,20] #把error函数中除了p0以外的参数打包到args中(使用要求) Para=leastsq(error,p0,args=(Xi,Yi)) #读取结果 k,b=Para[0] print("k=",k,"b=",b) print("cost:"+str(Para[1])) print("求解的拟合直线为:") print("y="+str(round(k,2))+"x+"+str(round(b,2))) ''' 绘图,看拟合效果. matplotlib默认不支持中文,label设置中文的话需要另行设置 如果报错,改成英文就可以 ''' #画样本点 plt.figure(figsize=(8,6)) ##指定图像比例: 8:6 plt.scatter(Xi,Yi,color="green",label="样本数据",linewidth=2) #画拟合直线 x=np.linspace(0,12,100) ##在0-15直接画100个连续点 y=k*x+b ##函数式 plt.plot(x,y,color="red",label="拟合直线",linewidth=2) plt.legend() #绘制图例 plt.show()
結果如下:
輸出結果:
k= 0.900458420439 b. k= 0.900458420439 b = 0.831055638877
cost:1
解的擬合直線為:
y=0.9x+0.83
# 繪圖結果:
##############C檢查結果:####以上是詳解Python中使用最小平方法方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!