首頁 >後端開發 >php教程 >如何降低PHP Redis記憶體佔用的方法分享(圖文)

如何降低PHP Redis記憶體佔用的方法分享(圖文)

黄舟
黄舟原創
2017-03-24 09:34:522650瀏覽

本文主要介紹了降低PHP Redis記憶體佔用的方法。具有很好的參考價值。下面跟著小編一起來看下吧

1、降低redis記憶體佔用的優點

 1、有助於減少建立快照、載入快照所花費的時間

 2、提升載入AOF檔和重寫AOF檔時的效率

 3、縮短從伺服器進行同步所需的時間

 4、無需添加額外的硬件就可以讓redis存貯更多的資料

2、短結構

Redis為列表、集合、雜湊、有序集合提供了一組配置選項,這些選項可以讓redis以更節約的方式儲存較短的結構。

2.1、ziplist壓縮清單(清單、雜湊、有續集和)

通常情況下使用的儲存方式

當清單、雜湊、有序集合的長度較短或體積較小的時候,redis將會採用一種名為ziplist的緊湊儲存方式來儲存這些結構。

ziplist是列表、散列、有序集合這三種不同類型的物件的一種非結構化表示,它會以序列化的方式存儲數據,這些序列化的數據每次都被讀取的時候都需要解碼,每次寫入的時候也要編碼。

雙向列表與壓縮列表的區別:

為了了解壓縮列表比其他資料結構更加節約內存,我們以列表結構為例進行深入研究。

典型的雙向清單

在典型雙向清單裡面,每個值都會有一個節點表示。每個節點都會帶有指向鍊錶前一個節點和後一個節點的指針,以及一個指向節點包含的字串#值的指針。

每個節點所包含的字串值都會分成三部分來儲存。包括字串長度、字串值中剩餘可用位元組數量、以空字元結尾的字串本身。

範例:

假若一個某個節點儲存了'abc'字串,在32位元的平台下保守估計需要21個位元組的額外開銷(三個指標+兩個int+空字元即:3*4+2*4+1=21)

由例子可知儲存一個3位元組字串就需要付出至少21個位元組的額外開銷。

ziplist

壓縮清單是由節點組成的序列,每個節點包含兩個長度和一個字串。第一個長度記錄前一個節點的長度(用於對壓縮清單從後向前遍歷);第二個長度是記錄本當前點的長度;被儲存的字串。

範例:

儲存字串'abc',兩個長度都可以用1位元組來存儲,因此所帶來的額外開銷為2位元組(兩個長度即1 +1=2)

結論:

壓縮列表是透過避免儲存額外的指標和元數據,從而達到降低額外的開銷。

設定:

#list
list-max-ziplist-entries 512 #表示允许包含的最大元素数量
list-max-ziplist-value 64  #表示压缩节点允许存储的最大体积
#hash         #当超过任一限制后,将不会使用ziplist方式进行存储
hash-max-ziplist-entries 512
hash-max-ziplist-value 64
#zset
zset-max-ziplist-entries 128
zset-max-ziplist-value 64

測試list:

1、建立test.php檔案

#test.php
<?php
$redis=new Redis();
$redis->connect(&#39;192.168.95.11&#39;,&#39;6379&#39;);
for ($i=0; $i<512 ; $i++) 
{ 
  $redis->lpush(&#39;test-list&#39;,$i.&#39;-test-list&#39;); #往test-list推入512条数据
}
?>

此時的test-list中含有512條數據,沒有超除設定檔中的限制

2、往test-list中再推入一條數據

此時test-list含有513條數據,大於設定檔中限制的512條,索引將放棄ziplist儲存方式,採用其原來的linkedlist儲存方式

雜湊與有序集合同理。

2.2、intset整數集合(集合)

前提條件,集合中包含的所有member都可以被解析為十進制整數。

以有序陣列的方式儲存集合不僅可以降低記憶體消耗,還可以提升集合運算的執行速度。

設定:

set-max-intset-entries  512   #限制集合中member個數,超出則不採取intset儲存

測試:

建立test.php檔案

#test.php
<?php
$redis=new Redis();
$redis->connect(&#39;192.168.95.11&#39;,&#39;6379&#39;);
for ($i=0; $i<512 ; $i++) 
{ 
  $redis->sadd(&#39;test-set&#39;,$i);  #给集合test-set插入512个member
}
?>

2.3、性能问题

不管列表、散列、有序集合、集合,当超出限制的条件后,就会转换为更为典型的底层结构类型。因为随着紧凑结构的体积不断变大,操作这些结构的速度将会变得越来越慢。

测试:

#将采用list进行代表性测试

测试思路:

1、在默认配置下往test-list推入50000条数据,查看所需时间;接着在使用rpoplpush将test-list数据全部推入到新列表list-new中,查看所需时间

2、修改配置,list-max-ziplist-entries 100000,再执行上面的同样操作

3、对比时间,得出结论

默认配置下测试:

1、插入数据,查看时间

#test1.php
<?php
header("content-type: text/html;charset=utf8;");
$redis=new Redis();
$redis->connect(&#39;192.168.95.11&#39;,&#39;6379&#39;);
$start=time();
for ($i=0; $i<50000 ; $i++) 
{ 
  $redis->lpush(&#39;test-list&#39;,$i.&#39;-aaaassssssddddddkkk&#39;);
}
$end=time();
echo "插入耗时为:".($end-$start).&#39;s&#39;;
?>

结果耗时4秒

2、执行相应命令,查看耗时

#test2.php
<?php
header("content-type: text/html;charset=utf8;");
$redis=new Redis();
$redis->connect(&#39;192.168.95.11&#39;,&#39;6379&#39;);
$start=time();
$num=0;
while($redis->rpoplpush(&#39;test-list&#39;,&#39;test-new&#39;))
{
  $num+=1;
}
echo &#39;执行次数为:&#39;.$num."<br/>";
$end=time();
echo "耗时为:".($end-$start).&#39;s&#39;;
?>

更改配置文件下测试  

1、先修改配置文件

list-max-ziplist-entries 100000  #将这个值修改大一点,可以更好的凸显对性能的影响

list-max-ziplist-value 64    #此值可不做修改

2、插入数据

执行test1.php

结果为:耗时12s

3、执行相应命令,查看耗时

执行test2.php

结果为:执行次数:50000,耗时12s

结论:

在本机中执行测试50000条数据就相差8s,若在高并发下,长压缩列表和大整数集合将起不到任何的优化,反而使得性能降低。

3、片结构

分片的本质就是基于简单的规则将数据划分为更小的部分,然后根据数据所属的部分来决定将数据发送到哪个位置上。很多数据库使用这种技术来扩展存储空间,并提高自己所能处理的负载量。

结合前面讲到的,我们不难发现分片结构对于redis的重要意义。因此我们需要在配置文件中关于ziplist以及intset的相关配置做出适当的调整。

3.1、分片式散列

#ShardHash.class.php

<?php
class ShardHash
{
  private $redis=&#39;&#39;; #存储redis对象
  /**
  * @desc 构造函数
  * 
  * @param $host string | redis主机
  * @param $port int  | 端口
  */
  public function construct($host,$port=6379)
  {
    $this->redis=new Redis();
    $this->redis->connect($host,$port);
  } 
  /**
  * @desc 计算某key的分片ID
  *
  * @param $base string | 基础散列
  * @param $key  string | 要存储到分片散列里的键名
  * @param $total int  | 预计非数字分片总数
  * 
  * @return string | 返回分片键key
  */
  public function shardKey ($base,$key,$total)
  {
    if(is_numeric($key))
    {
      $shard_id=decbin(substr(bindec($key),0,5)); #取$key二进制高五位的十进制值
    }
    else
    {
      $shard_id=crc32($key)%$shards; #求余取模
    }
    return $base.&#39;_&#39;.$shard_id;
  }
  /**
  * @desc 分片式散列hset操作
  *
  * @param $base string | 基础散列
  * @param $key  string | 要存储到分片散列里的键名
  * @param $total int  | 预计元素总数
  * @param $value string/int | 值
  *
  * @return bool | 是否hset成功
  */
  public function shardHset($base,$key,$total,$value)
  {
    $shardKey=$this->shardKey($base,$key,$total);
    return $this->redis->hset($shardKey,$key,$value);
  }
  /**
  * @desc 分片式散列hget操作
  *
  * @param $base string | 基础散列
  * @param $key  string | 要存储到分片散列里的键名
  * @param $total int  | 预计元素总数
  *
  * @return string/false | 成功返回value
  */
  public function shardHget($base,$key,$total)
  {
    $shardKey=$this->shardKey($base,$key,$total);
    return $this->redis->hget($shardKey,$key);
  }
} 
$obj=new ShardHash(&#39;192.168.95.11&#39;);
echo $obj->shardHget(&#39;hash-&#39;,&#39;key&#39;,500);
?>

散列分片主要是根据基础键以及散列包含的键计算出分片键ID,然后再与基础键拼接成一个完整的分片键。在执行hset与hget以及大部分hash命令时,都需要先将key(field)通过shardKey方法处理,得到分片键才能够进行下一步操作。

3.2、分片式集合

如何构造分片式集合才能够让它更节省内存,性能更加强大呢?主要的思路就是,将集合里面的存储的数据尽量在不改变其原有功能的情况下转换成可以被解析为十进制的数据。根据前面所讲到的,当集合中的所有成员都能够被解析为十进制数据时,将会采用intset存储方式,这不仅能够节省内存,而且还可以提高响应的性能。

例子:

假若要某个大型网站需要存储每一天的唯一用户访问量。那么就可以使用将用户的唯一标识符转化成十进制数字,再存入分片式set中。

#ShardSet.class.php

<?php
class ShardSet
{
  private $redis=&#39;&#39;; #存储redis对象
  /**
  * @desc 构造函数
  * 
  * @param $host string | redis主机
  * @param $port int  | 端口
  */
  public function construct($host,$port=6379)
  {
    $this->redis=new Redis();
    $this->redis->connect($host,$port);
  } 
  /**
  * @desc 根据基础键以及散列包含的键计算出分片键
  *
  * @param $base string | 基础散列
  * @param $key  string | 要存储到分片散列里的键名
  * @param $total int  | 预计分片总数
  * 
  * @return string | 返回分片键key
  */
  public function shardKey ($base,$member,$total=512)
  {
    $shard_id=crc32($member)%$shards; #求余取模
    return $base.&#39;_&#39;.$shard_id;
  }
  /**
  * @desc 计算唯一用户日访问量
  * 
  * @param $member int | 用户唯一标识符
  *
  * @return string | ok表示count加1 false表示用户今天已经访问过不加1
  */
  public function count($member)
  {
    $shardKey=$this->shardKey(&#39;count&#39;,$member,$total=10); #$totla调小一点用于测试
    $exists=$this->redis->sismember($shardKey,$member); 
    if(!$exists)  #判断member今天是否访问过
    {
      $this->redis->sadd($shardKey,$member);
      $this->redis->incr(&#39;count&#39;);
      $ttl1=$this->redis->ttl(&#39;count&#39;);
      if($ttl1===-1)
        $this->redis->expireat(&#39;count&#39;,strtotime(date(&#39;Y-m-d 23:59:59&#39;))); #设置过期时间
      $ttl2=$this->redis->ttl($shardKey);
      if($ttl2===-1)
      {
        $this->redis->expireat("$shardKey",strtotime(date(&#39;Y-m-d 23:59:59&#39;))); #设置过期时间
        #echo $shardKey; #测试使用
      }
      #echo $shardKey;  #测试使用
      return &#39;ok&#39;;
    }
    return &#39;false&#39;;
  }
}
$str=substr(md5(uniqid()), 0, 8);  #取出前八位
#将$str作为客户的唯一标识符
$str=hexdec($str);   #将16进制转换为十进制
$obj=new ShardSet(&#39;192.168.95.11&#39;);
$obj->count($str);
?>

4、将信息打包转换成存储字节

结合前面所讲的分片技术,采用string分片结构为大量连续的ID用户存储信息。

使用定长字符串,为每一个ID分配n个字节进行存储相应的信息。

接下来我们将采用存储用户国家、省份的例子进行讲解:

假若某个用户需要存储中国、广东省这两个信息,采用utf8字符集,那么至少需要消耗5*3=15个字节。如果网站的用户量大的话,这样的做法将会占用很多资源。接下来我们采用的方法每个用户仅仅只需要占用两个字节就可以完成存储信息。

具体思路步骤:

1、首先我们为国家、以及各国家的省份信息建立相应的'信息表格'

2、将'信息表格'建好后,也意味着每个国家,省份都有相应的索引号

3、看到这里大家应该都想到了吧,对就是使用两个索引作为用户存储的信息,不过需要注意的是我们还需要对这两个索引进行相应的处理

4、将索引当做ASCII码,将其转换为对应ASCII(0~255)所指定的字符

5、使用前面所讲的分片技术,定长分片string结构,将用户的存储位置找出来(redis中一个string不能超过512M)

6、实现信息的写入以及取出(getrange、setrange)

实现代码:

#PackBytes.class.php

<?php
#打包存储字节
#存储用户国家、省份信息
class PackBytes
{
  private $redis=&#39;&#39;; #存储redis对象
  /**
  * @desc 构造函数
  * 
  * @param $host string | redis主机
  * @param $port int  | 端口
  */
  public function construct($host,$port=6379)
  {
    $this->redis=new Redis();
    $this->redis->connect($host,$port);
  } 
  /**
  * @desc 处理并缓存国家省份数据
  * @param $countries string | 第一类数据,国家字符串
  * @param $provinces 二维array | 第二类数据,各国省份数组
  * @param $cache 1/0  | 是否使用缓存,默认0不使用
  *
  * @return array | 返回总数据
  */
  public function dealData($countries,$provinces,$cache=0)
  {
    if($cache)
    {
      $result=$this->redis->get(&#39;cache_data&#39;);
      if($result)
        return unserialize($result);
    }
    $arr=explode(&#39; &#39;,$countries);
    $areaArr[]=$arr;
    $areaArr[]=$provinces;
    $cache_data=serialize($areaArr);
    $this->redis->set(&#39;cache_data&#39;,$cache_data);
    return $areaArr;
  }
  /**
  * @desc 将具体信息按表索引转换成编码信息
  * 
  * @param $countries,$provinces,$cache| 参考dealData方法
  * @param $country string       | 具体信息--国家
  * @param $province  string      | 具体信息--省份
  *
  * @return string | 返回转换的编码信息
  */
  public function getCode($countries,$provinces,$country,$province,$cache=0)
  {
    $dataArr=$this->dealData($countries,$provinces,$cache=0);
    $result=array_search($country, $dataArr[0]); #查找数组中是否含有data1
    if($result===false)     #判断是否存在
      return chr(0).chr(0);  #不存在则返回初始值
    $code=chr($result);
    $result=array_search($province, $dataArr[1][$country]); #查找数组中是否含有data2
    if($result===false)
      return $code.chr(0);
    return $code.chr($result);   #返回对应ASCII(0~255)所指定的字符 
  }
  /**
  * @desc 计算用户存储编码数据的相关位置信息
  * 
  * @param $userID int | 用户的ID
  *
  * @return array | 返回一个数组 包含数据存储时的分片ID、以及属于用户的存储位置(偏移量)
  */
  public function savePosition($userID)
  {
    $shardSize=pow(2, 3);   #每个分片的大小
    $position=$userID*2;    #user的排位
    $arr[&#39;shardID&#39;]=floor($position/$shardSize);  #分片ID
    $arr[&#39;offset&#39;]=$position%$shardSize;   #偏移量
    return $arr;
  }
  /**
  * @desc | 整合方法,将编码信息存入redis中string相应的位置
  *
  * @param $userID int      | 用户ID
  * @param $countries string   | 第一类数据,国家字符串
  * @param $provinces 二维array | 第二类数据,各国省份数组
  * @param $country string       | 具体信息--国家
  * @param $province  string      | 具体信息--省份
  * @param $cache 1/0      | 是否使用缓存,默认0不使用
  *
  * @return 成功返回写入位置/失败false
  */
  public function saveCode($userID,$countries,$provinces,$country,$province,$cache=0)
  {
    $code=$this->getCode($countries,$provinces,$country,$province,$cache=0);
    $arr=$this->savePosition($userID); #存储相关位置信息
    return $this->redis->setrange(&#39;save_code_&#39;.$arr[&#39;shardID&#39;],$arr[&#39;offset&#39;],$code);
  }
  /**
  * @desc 获取用户的具体国家与省份信息
  *
  * @param $userID int | 用户ID
  *
  * @return array | 返回包含国家和省份信息的数组
  */
  public function getMessage($userID)
  {
    $position=$this->savePosition($userID);
    $code=$this->redis->getrange(&#39;save_code_&#39;.$position[&#39;shardID&#39;],$position[&#39;offset&#39;],$position[&#39;offset&#39;]+1);
    $arr=str_split($code);
    $areaArr=$this->dealData(&#39;&#39;, &#39;&#39;,$cache=1); #使用缓存数据
    $message[&#39;country&#39;]=$areaArr[0][ord($arr[0])];
    $message[&#39;province&#39;]=$areaArr[1][$message[&#39;country&#39;]][ord($arr[1])];
    return $message;
  }
}
header("content-type: text/html;charset=utf8;");
$countries="无 中国 日本 越南 朝鲜 俄罗斯 巴基斯坦 美国";
$provinces=array(
    &#39;无&#39;=>array(&#39;无&#39;),
    &#39;中国&#39;=>array(&#39;无&#39;,&#39;广东&#39;,&#39;湖南&#39;,&#39;湖北&#39;,&#39;广西&#39;,&#39;云南&#39;,&#39;湖南&#39;,&#39;河北&#39;),
    &#39;日本&#39;=>array(&#39;无&#39;,&#39;龟孙子区&#39;,&#39;王八区&#39;,&#39;倭国鬼区&#39;,&#39;鬼子区&#39;,&#39;萝卜头区&#39;),
  );
$obj=new PackBytes(&#39;192.168.95.11&#39;);
/*
#数据处理,并将其缓存到redis中
$b=$obj->dealData($countries,$provinces);
echo "<pre class="brush:php;toolbar:false">";
print_r($b);
echo "
";die; */ /* #存储用户国家省份信息 $country='中国'; $province='广东'; $result=$obj->saveCode(0,$countries,$provinces,$country,$province); echo "
";
print_r($result);
echo "
"; */ /* #取出用户国家省份信息 $a=$obj->getMessage(15); echo "
";
print_r($a);
echo "
";die; */ ?>

测试:

1、dealData处理后的信息,即为'信息表表格'

2、saveCode()

userID 国家 省份
0 中国 广东
13 日本 龟孙子区
15 日本 王八区

3、getMessage()

以上是如何降低PHP Redis記憶體佔用的方法分享(圖文)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn