搜尋
首頁後端開發Python教學17個Python奇技淫巧分享

17個Python奇技淫巧分享

Mar 19, 2017 pm 02:40 PM
python

顯示有限的介面到外部

當發布python第三方package時,並不希望程式碼中所有的函數class可以被外部import,在init.py中加入all屬性list#可以填入可以import的類別或函數名, 可以起到限制的import的作用, 防止外部import其他函數或類別。

17個Python奇技淫巧分享

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from base import APIBase
from client import Client
from decorator import interface, export, stream
from server import Server
from storage import Storage
from util import (LogFormatter, disable_logging_to_stderr,
                       enable_logging_to_kids, info)
all = ['APIBase', 'Client', 'LogFormatter', 'Server',
           'Storage', 'disable_logging_to_stderr', 'enable_logging_to_kids',
           'export', 'info', 'interface', 'stream']

with的魔力

with語句需要支援上下文管理協定的物件 上下文管理協議包含enter和exit兩個方法。 with語句建立運行時上下文需要透過這兩個方法執行進入和退出操作。

其中上下文表達式是跟在with之後的表達式, 表達式傳回一個上下文管理物件。

# 常见with使用场景
with open("test.txt", "r") as my_file:  # 注意, 是enter()方法的返回值赋值给了my_file,
    for line in my_file:
        print line

詳細原理可以看這篇文章, 淺談 Python 的 with 語句。

知道具體原理,我們可以自訂支援上下文管理協定的類,類別中實作enter和exit方法。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
class MyWith(object):
    def init(self):
        print "init method"
    def enter(self):
        print "enter method"
        return self  # 返回对象给as后的变量
    def exit(self, exc_type, exc_value, exc_traceback):
        print "exit method"
        if exc_traceback is None:
            print "Exited without Exception"
            return True
        else:
            print "Exited with Exception"
            return False
def test_with():
    with MyWith() as my_with:
        print "running my_with"
    print "------分割线-----"
    with MyWith() as my_with:
        print "running before Exception"
        raise Exception
        print "running after Exception"
if name == 'main':
    test_with()

執行結果如下:

init method
enter method
running my_with
exit method
Exited without Exception
------分割线-----
init method
enter method
running before Exception
exit method
Exited with Exception
Traceback (most recent call last):
  File "bin/python", line 34, in <module>
    exec(compile(filef.read(), file, "exec"))
  File "test_with.py", line 33, in <module>
    test_with()
  File "test_with.py", line 28, in test_with
    raise Exception
Exception</module></module>

證明了會先執行enter方法, 然後呼叫with內的邏輯, 最後執行exit做退出處理, 並且, 即使出現異常也能正常退出

filter的用法

相對filter而言, map和reduce使用的會更頻繁一些, filter正如其名字, 依照某種規則過濾掉一些元素。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
lst = [1, 2, 3, 4, 5, 6]
# 所有奇数都会返回True, 偶数会返回False被过滤掉
print filter(lambda x: x % 2 != 0, lst)
#输出结果
[1, 3, 5]

一行判斷

當條件滿足時, 傳回的為等號後面的變量, 否則返回else後語句。

lst = [1, 2, 3]
new_lst = lst[0] if lst is not None else None
print new_lst
# 打印结果
1

裝飾器之單例

使用裝飾器實作簡單的單例模式

# 单例装饰器
def singleton(cls):
    instances = dict()  # 初始为空
    def _singleton(*args, **kwargs):
        if cls not in instances:  #如果不存在, 则创建并放入字典
            instances[cls] = cls(*args, **kwargs)
        return instances[cls]
    return _singleton
@singleton
class Test(object):
    pass
if name == 'main':
    t1 = Test()
    t2 = Test()
    # 两者具有相同的地址
    print t1, t2

static method裝飾器

類別中兩種常用的裝飾, 先區分一下他們:

  • 普通成員函數, 其中第一個隱式參數為物件

  • classmethod裝飾器, 類別方法(給人感覺非常類似於OC中的類別方法), 其中第一個隱式參數為類別

  • staticmethod裝飾器, 沒有任何隱含參數. python中的靜態方法類似與C++中的靜態方法

#!/usr/bin/env python
# -*- coding: utf-8 -*-
class A(object):
    # 普通成员函数
    def foo(self, x):
        print "executing foo(%s, %s)" % (self, x)
    @classmethod   # 使用classmethod进行装饰
    def class_foo(cls, x):
        print "executing class_foo(%s, %s)" % (cls, x)
    @staticmethod  # 使用staticmethod进行装饰
    def static_foo(x):
        print "executing static_foo(%s)" % x
def test_three_method():
    obj = A()
    # 直接调用噗通的成员方法
    obj.foo("para")  # 此处obj对象作为成员函数的隐式参数, 就是self
    obj.class_foo("para")  # 此处类作为隐式参数被传入, 就是cls
    A.class_foo("para")  #更直接的类方法调用
    obj.static_foo("para")  # 静态方法并没有任何隐式参数, 但是要通过对象或者类进行调用
    A.static_foo("para")
if name == 'main':
    test_three_method()

# 函数输出
executing foo(<main.a>, para)
executing class_foo(<class>, para)
executing class_foo(<class>, para)
executing static_foo(para)
executing static_foo(para)</class></class></main.a>

property裝飾器

  • 定義私有類別屬性

將property與裝飾器結合實作屬性私有化(更簡單安全的實作get和set方法)。

#python内建函数
property(fget=None, fset=None, fdel=None, doc=None)

fget是取得屬性的值的函數,fset是設定屬性值的函數,fdel是刪除屬性的函數,doc是一個字串(像註解一樣)。從實作來看,這些參數都是可選的。

property有三個方法getter(), setter()和delete() 來指定fget, fset和fdel。 這表示以下這行:

class Student(object):
    @property  #相当于property.getter(score) 或者property(score)
    def score(self):
        return self._score
    @score.setter #相当于score = property.setter(score)
    def score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value  100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value

iter魔法

  • 透過yield和iter的結合,我們可以把一個物件變成可迭代的

  • 透過str的重寫, 可以直接透過想要的形式列印物件

#!/usr/bin/env python
# -*- coding: utf-8 -*-
class TestIter(object):
    def init(self):
        self.lst = [1, 2, 3, 4, 5]
    def read(self):
        for ele in xrange(len(self.lst)):
            yield ele
    def iter(self):
        return self.read()
    def str(self):
        return ','.join(map(str, self.lst))

    repr = str
def test_iter():
    obj = TestIter()
    for num in obj:
        print num
    print obj
if name == 'main':
    test_iter()

神奇partial

partial使用上很像C++中仿函數(函數物件)。

在stackoverflow給出了類似與partial的運作方式:

def partial(func, *part_args):
    def wrapper(*extra_args):
        args = list(part_args)
        args.extend(extra_args)
        return func(*args)
    return wrapper

利用用閉包的特性綁定預先綁定一些函數參數,傳回一個可呼叫的變量, 直到真正的呼叫執行:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from functools import partial
def sum(a, b):
    return a + b
def test_partial():
    fun = partial(sum, 2)   # 事先绑定一个参数, fun成为一个只需要一个参数的可调用变量
    print fun(3)  # 实现执行的即是sum(2, 3)
if name == 'main':
    test_partial()

# 执行结果
5

神秘eval

eval我理解为一种内嵌的python解释器(这种解释可能会有偏差), 会解释字符串为对应的代码并执行, 并且将执行结果返回。

看一下下面这个例子:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
def test_first():
    return 3
def test_second(num):
    return num
action = {  # 可以看做是一个sandbox
        "para": 5,
        "test_first" : test_first,
        "test_second": test_second
        }
def test_eavl():  
    condition = "para == 5 and test_second(test_first) > 5"
    res = eval(condition, action)  # 解释condition并根据action对应的动作执行
    print res
if name == '_

exec

  • exec在Python中会忽略返回值, 总是返回None, eval会返回执行代码或语句的返回值

  • exec和eval在执行代码时, 除了返回值其他行为都相同

  • 在传入字符串时, 会使用compile(source, ‘string>’, mode)编译字节码。 mode的取值为exec和eval

#!/usr/bin/env python
# -*- coding: utf-8 -*-
def test_first():
    print "hello"
def test_second():
    test_first()
    print "second"
def test_third():
    print "third"
action = {
        "test_second": test_second,
        "test_third": test_third
        }
def test_exec():
    exec "test_second" in action
if name == 'main':
    test_exec()  # 无法看到执行结果

getattr

getattr(object, name[, default])返回对象的命名属性,属性名必须是字符串。如果字符串是对象的属性名之一,结果就是该属性的值。例如, getattr(x, ‘foobar’) 等价于 x.foobar。 如果属性名不存在,如果有默认值则返回默认值,否则触发 AttributeError 。

# 使用范例
class TestGetAttr(object):
    test = "test attribute"
    def say(self):
        print "test method"
def test_getattr():
    my_test = TestGetAttr()
    try:
        print getattr(my_test, "test")
    except AttributeError:
        print "Attribute Error!"
    try:
        getattr(my_test, "say")()
    except AttributeError: # 没有该属性, 且没有指定返回值的情况下
        print "Method Error!"
if name == 'main':
    test_getattr()

# 输出结果
test attribute
test method

命令行处理

def process_command_line(argv):
    """
    Return a 2-tuple: (settings object, args list).
    `argv` is a list of arguments, or `None` for ``sys.argv[1:]``.
    """
    if argv is None:
        argv = sys.argv[1:]
    # initialize the parser object:
    parser = optparse.OptionParser(
        formatter=optparse.TitledHelpFormatter(width=78),
        add_help_option=None)
    # define options here:
    parser.add_option(      # customized description; put --help last
        '-h', '--help', action='help',
        help='Show this help message and exit.')
    settings, args = parser.parse_args(argv)
    # check number of arguments, verify values, etc.:
    if args:
        parser.error('program takes no command-line arguments; '
                     '"%s" ignored.' % (args,))
    # further process settings & args if necessary
    return settings, args
def main(argv=None):
    settings, args = process_command_line(argv)
    # application code here, like:
    # run(settings, args)
    return 0        # success
if name == 'main':
    status = main()
    sys.exit(status)

读写csv文件

# 从csv中读取文件, 基本和传统文件读取类似
import csv
with open('data.csv', 'rb') as f:
    reader = csv.reader(f)
    for row in reader:
        print row
# 向csv文件写入
import csv
with open( 'data.csv', 'wb') as f:
    writer = csv.writer(f)
    writer.writerow(['name', 'address', 'age'])  # 单行写入
    data = [
            ( 'xiaoming ','china','10'),
            ( 'Lily', 'USA', '12')]
    writer.writerows(data)  # 多行写入

各种时间形式转换

只发一张网上的图, 然后查文档就好了, 这个是记不住的

17個Python奇技淫巧分享

字符串格式化

一个非常好用, 很多人又不知道的功能:

>>> name = "andrew"
>>> "my name is {name}".format(name=name)
'my name is andrew'

以上是17個Python奇技淫巧分享的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
學習Python:2小時的每日學習是否足夠?學習Python:2小時的每日學習是否足夠?Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Web開發的Python:關鍵應用程序Web開發的Python:關鍵應用程序Apr 18, 2025 am 12:20 AM

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

python在行動中:現實世界中的例子python在行動中:現實世界中的例子Apr 18, 2025 am 12:18 AM

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python的主要用途:綜合概述Python的主要用途:綜合概述Apr 18, 2025 am 12:18 AM

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的主要目的:靈活性和易用性Python的主要目的:靈活性和易用性Apr 17, 2025 am 12:14 AM

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python:多功能編程的力量Python:多功能編程的力量Apr 17, 2025 am 12:09 AM

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

每天2小時學習Python:實用指南每天2小時學習Python:實用指南Apr 17, 2025 am 12:05 AM

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前By尊渡假赌尊渡假赌尊渡假赌
威爾R.E.P.O.有交叉遊戲嗎?
1 個月前By尊渡假赌尊渡假赌尊渡假赌

熱工具

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用