首頁 >Java >java教程 >使用Java並發開發Lock框架詳細說明

使用Java並發開發Lock框架詳細說明

高洛峰
高洛峰原創
2017-03-15 18:29:411505瀏覽

摘要

我們已經知道,synchronized 是Java的關鍵字,是Java的內建特性,在JVM層面實現了對臨界資源的同步互斥訪問,但synchronized 粒度有些大,在處理實際問題時有許多局限性,例如回應中斷等。 Lock 提供了比 synchronized更廣泛的鎖定操作,它能以更優雅的方式處理線程同步問題。本文以synchronized與Lock的比較為切入點,對Java中的Lock框架的枝幹部分進行了詳細介紹,最後給出了鎖的一些相關概念。

一. synchronized 的限制與Lock 的優點

如果一個程式碼區塊被synchronized關鍵字修飾,當一個執行緒取得了對應的鎖,並執行該程式碼區塊時,其他執行緒便只能一直等待直到佔有鎖的執行緒釋放鎖。事實上,佔有鎖的執行緒釋放鎖一般會是以下三種情況之一:

  • 佔有鎖的執行緒執行了該程式碼區塊,然後釋放對鎖的佔有;

  • 佔有鎖定執行緒執行發生異常,此時JVM會讓執行緒自動釋放鎖定;

  • 佔有鎖定執行緒進入WAITING 狀態從而釋放鎖,例如在該執行緒中呼叫wait()方法等。

synchronized 是Java語言的內建特性,可輕鬆實現對臨界資源的同步互斥存取。那麼,為什麼還會出現Lock呢?試考慮以下三種情況:

Case 1 :

在使用synchronized關鍵字的情況下,假如佔有鎖的執行緒由於要等待IO或其他原因(例如呼叫sleep方法)被阻塞了,但是又沒有釋放鎖,那麼其他線程就只能一直等待,別無他法。這會極大影響程式執行效率。因此,就需要有一個機制可以不讓等待的執行緒一直無期限地等待下去(例如只等待一定的時間 (解決方案:tryLock(long time, TimeUnit unit)) 或能夠回應中斷 (解決方案:lockInterruptibly())),這種情況可以透過Lock 解決。

Case 2 :

我們知道,當多個執行緒讀寫檔案時,讀取操作和寫入操作會發生衝突現象,寫入操作和寫入操作也會發生衝突現象,但是讀操作和讀取操作不會發生衝突現象。但是如果採用synchronized關鍵字實現同步的話,就會導致一個問題,即當多個線程都只是進行讀取操作時,也只有一個線程在可以進行讀取操作,其他線程只能等待鎖定的釋放而無法進行讀取操作。因此,需要一種機制來使得當多個執行緒都只是進行讀取操作時,執行緒之間不會發生衝突。同樣地,Lock也可以解決這個情況 (解決方案:ReentrantReadWriteLock) 。

Case 3 :

我們可以透過Lock得知執行緒有沒有成功取得到鎖 (解決方案:ReentrantLock) ,但這個是synchronized無法辦到的。

上面提到的三種情形,我們都可以透過Lock來解決,但 synchronized 關鍵字卻無能為力。事實上,Lock 是java.util.concurrent.locks套件下的介面#,Lock 實作提供了比synchronized 關鍵字更廣泛的鎖定操作,它能以更優雅的方式處理線程同步問題。也就是說,Lock提供了比synchronized更多的功能。但要注意以下幾點:

1)synchronized是Java的關鍵字,因此是Java的內建特性,是基於JVM層面實現的。而Lock是一個Java接口,是基於JDK層面實現的,透過這個接口可以實現同步訪問;

2)採用synchronized方式不需要用戶去手動釋放鎖,當synchronized方法或者synchronized代碼塊執行完之後,系統會自動讓執行緒釋放對鎖的佔用;而 Lock必須要使用者去手動釋放鎖,如果沒有主動釋放鎖,就有可能導致死鎖現象。

二. java.util.concurrent.locks套件下常用的類別與介面

以下是java.util.concurrent.locks套件下主要常用的類別與介面的關係:

使用Java并发开发Lock 框架详细说明

1、Lock

透過查看Lock的原始碼可知,Lock 是一個介面:

public interface Lock {
    void lock();
    void lockInterruptibly() throws InterruptedException;  // 可以响应中断
    boolean tryLock();
    boolean tryLock(long time, TimeUnit unit) throws InterruptedException;  // 可以响应中断
    void unlock();
    Condition newCondition();
}

下面來逐一分析Lock介面中每個方法。 lock()、tryLock()、tryLock(long time, TimeUnit unit) 和 lockInterruptibly()都是用來取得鎖的。 unLock()方法是用來釋放鎖的。 newCondition() 傳回 綁定到此 Lock 的新的 Condition 實例 ,用於執行緒間的協作。

1). lock()

在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?首先,lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。在前面已经讲到,如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此,一般来说,使用Lock必须在try…catch…块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:

Lock lock = ...;
lock.lock();
try{
    //处理任务
}catch(Exception ex){

}finally{
    lock.unlock();   //释放锁
}

2). tryLock() & tryLock(long time, TimeUnit unit)

tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true;如果获取失败(即锁已被其他线程获取),则返回false,也就是说,这个方法无论如何都会立即返回(在拿不到锁时不会一直在那等待)。

tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false,同时可以响应中断。如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

一般情况下,通过tryLock来获取锁时是这样使用的:

Lock lock = ...;if(lock.tryLock()) {     try{         //处理任务
     }catch(Exception ex){

     }finally{         lock.unlock();   //释放锁
     } 
}else {    //如果不能获取锁,则直接做其他事情
}

3). lockInterruptibly()

lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程 正在等待获取锁,则这个线程能够 响应中断,即中断线程的等待状态。例如,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。

由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出 InterruptedException,但推荐使用后者,原因稍后阐述。因此,lockInterruptibly()一般的使用形式如下:

public void method() throws InterruptedException {    lock.lockInterruptibly();    try {  
     //.....
    }    finally {        lock.unlock();
    }  
}

注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为interrupt()方法只能中断阻塞过程中的线程而不能中断正在运行过程中的线程。因此,当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,那么只有进行等待的情况下,才可以响应中断的。与 synchronized 相比,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

2、ReentrantLock

ReentrantLock,即 可重入锁。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例学习如何使用 ReentrantLock。

例 1 : Lock 的正确使用

public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();

    public static void main(String[] args) {
        final Test test = new Test();

        new Thread("A") {
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();

        new Thread("B") {
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }

    public void insert(Thread thread) {
        Lock lock = new ReentrantLock();  // 注意这个地方:lock被声明为局部变量
        lock.lock();
        try {
            System.out.println("线程" + thread.getName() + "得到了锁...");
            for (int i = 0; i < 5; i++) {
                arrayList.add(i);
            }
        } catch (Exception e) {

        } finally {
            System.out.println("线程" + thread.getName() + "释放了锁...");
            lock.unlock();
        }
    }
}/* Output: 
        线程A得到了锁...
        线程B得到了锁...
        线程A释放了锁...
        线程B释放了锁...
 *///:~

结果或许让人觉得诧异。第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么每个线程执行到lock.lock()处获取的是不同的锁,所以就不会对临界资源形成同步互斥访问。因此,我们只需要将lock声明为成员变量即可,如下所示。

public class Test {    private ArrayList<Integer> arrayList = new ArrayList<Integer>();    private Lock lock = new ReentrantLock();  // 注意这个地方:lock被声明为成员变量
    ...
}/* Output: 
        线程A得到了锁...
        线程A释放了锁...
        线程B得到了锁...
        线程B释放了锁...
 *///:~

例 2 : tryLock() & tryLock(long time, TimeUnit unit)

public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock(); // 注意这个地方:lock 被声明为成员变量

    public static void main(String[] args) {
        final Test test = new Test();

        new Thread("A") {
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();

        new Thread("B") {
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }

    public void insert(Thread thread) {
        if (lock.tryLock()) {     // 使用 tryLock()
            try {
                System.out.println("线程" + thread.getName() + "得到了锁...");
                for (int i = 0; i < 5; i++) {
                    arrayList.add(i);
                }
            } catch (Exception e) {

            } finally {
                System.out.println("线程" + thread.getName() + "释放了锁...");
                lock.unlock();
            }
        } else {
            System.out.println("线程" + thread.getName() + "获取锁失败...");
        }
    }
}/* Output: 
        线程A得到了锁...
        线程B获取锁失败...
        线程A释放了锁...
 *///:~

与 tryLock() 不同的是,tryLock(long time, TimeUnit unit) 能够响应中断,即支持对获取锁的中断,但尝试获取一个内部锁的操作(进入一个 synchronized 块)是不能被中断的。如下所示:

public class Test {
    private Lock lock = new ReentrantLock();   
    public static void main(String[] args)  {
        Test test = new Test();
        MyThread thread1 = new MyThread(test,"A");
        MyThread thread2 = new MyThread(test,"B");
        thread1.start();
        thread2.start();

        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        thread2.interrupt();
    }  

    public void insert(Thread thread) throws InterruptedException{
        if(lock.tryLock(4, TimeUnit.SECONDS)){
            try {
                System.out.println("time=" + System.currentTimeMillis() + " ,线程 " + thread.getName()+"得到了锁...");
                long now = System.currentTimeMillis();
                while (System.currentTimeMillis() - now < 5000) {
                    // 为了避免Thread.sleep()而需要捕获InterruptedException而带来的理解上的困惑,
                    // 此处用这种方法空转3秒
                }
            }finally{
                lock.unlock();
            }
        }else {
            System.out.println("线程 " + thread.getName()+"放弃了对锁的获取...");
        }
    }
}

class MyThread extends Thread {
    private Test test = null;

    public MyThread(Test test,String name) {
        super(name);
        this.test = test;
    }

    @Override
    public void run() {
        try {
            test.insert(Thread.currentThread());
        } catch (InterruptedException e) {
            System.out.println("time=" + System.currentTimeMillis() + " ,线程 " + Thread.currentThread().getName() + "被中断...");
        }
    }
}/* Output: 
        time=1486693682559, 线程A 得到了锁...
        time=1486693684560, 线程B 被中断...(响应中断,时间恰好间隔2s)
 *///:~

例 3 : 使用 lockInterruptibly() 响应中断

public class Test {
    private Lock lock = new ReentrantLock();   
    public static void main(String[] args)  {
        Test test = new Test();
        MyThread thread1 = new MyThread(test,"A");
        MyThread thread2 = new MyThread(test,"B");
        thread1.start();
        thread2.start();

        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        thread2.interrupt();
    }  

    public void insert(Thread thread) throws InterruptedException{
        //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将 InterruptedException 抛出
        lock.lockInterruptibly(); 
        try {  
            System.out.println("线程 " + thread.getName()+"得到了锁...");
            long startTime = System.currentTimeMillis();
            for(    ;     ; ) {              // 耗时操作
                if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
                    break;
                //插入数据
            }
        }finally {
            System.out.println(Thread.currentThread().getName()+"执行finally...");
            lock.unlock();
            System.out.println("线程 " + thread.getName()+"释放了锁");
        } 
        System.out.println("over");
    }
}

class MyThread extends Thread {
    private Test test = null;

    public MyThread(Test test,String name) {
        super(name);
        this.test = test;
    }

    @Override
    public void run() {
        try {
            test.insert(Thread.currentThread());
        } catch (InterruptedException e) {
            System.out.println("线程 " + Thread.currentThread().getName() + "被中断...");
        }
    }
}/* Output: 
        线程 A得到了锁...
        线程 B被中断...
 *///:~

运行上述代码之后,发现 thread2 能够被正确中断,放弃对任务的执行。特别需要注意的是,如果需要正确中断等待锁的线程,必须将获取锁放在外面(try 语句块外),然后将 InterruptedException 抛出。如果不这样做,像如下代码所示:

public class Test {
    private Lock lock = new ReentrantLock();

    public static void main(String[] args) {
        Test test = new Test();
        MyThread thread1 = new MyThread(test, "A");
        MyThread thread2 = new MyThread(test, "B");
        thread1.start();
        thread2.start();

        try {
            Thread.sleep(5000);
            System.out.println("线程" + Thread.currentThread().getName()
                    + " 睡醒了...");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        thread2.interrupt();
    }

    public void insert(Thread thread) {

        try {
            // 注意,如果将获取锁放在try语句块里,则必定会执行finally语句块中的解锁操作。若线程在获取锁时被中断,则再执行解锁操作就会导致异常,因为该线程并未获得到锁。
            lock.lockInterruptibly();
            System.out.println("线程 " + thread.getName() + "得到了锁...");
            long startTime = System.currentTimeMillis();
            for (;;) {
                if (System.currentTimeMillis() - startTime >= Integer.MAX_VALUE) // 耗时操作
                    break;
                // 插入数据
            }
        } catch (Exception e) {

        } finally {
            System.out.println(Thread.currentThread().getName()
                    + "执行finally...");
            lock.unlock();
            System.out.println("线程 " + thread.getName() + "释放了锁...");
        }
    }
}

class MyThread extends Thread {
    private Test test = null;

    public MyThread(Test test, String name) {
        super(name);
        this.test = test;
    }

    @Override
    public void run() {

        test.insert(Thread.currentThread());
        System.out.println("线程 " + Thread.currentThread().getName() + "被中断...");
    }
}/* Output: 
        线程A 得到了锁...
        线程main 睡醒了...
        B执行finally...
        Exception in thread "B" 
            java.lang.IllegalMonitorStateException
            at java.util.concurrent.locks.ReentrantLock$Sync.tryRelease(Unknown Source)
            at java.util.concurrent.locks.AbstractQueuedSynchronizer.release(Unknown Source)
            at java.util.concurrent.locks.ReentrantLock.unlock(Unknown Source)
            at Test.insert(Test.java:39)
            at MyThread.run(Test.java:56)
 *///:~

注意,上述代码就将锁的获取操作放在try语句块里,则必定会执行finally语句块中的解锁操作。在 准备获取锁的 线程B 被中断后,再执行解锁操作就会抛出 IllegalMonitorStateException,因为该线程并未获得到锁却执行了解锁操作。

3、ReadWriteLock

ReadWriteLock也是一个接口,在它里面只定义了两个方法:

public interface ReadWriteLock {    /**
     * Returns the lock used for reading.
     *
     * @return the lock used for reading.
     */    Lock readLock();    /**
     * Returns the lock used for writing.
     *
     * @return the lock used for writing.
     */    Lock writeLock();
}

一个用来获取读锁,一个用来获取写锁。也就是说,将对临界资源的读写操作分成两个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的 ReentrantReadWriteLock 实现了 ReadWriteLock 接口。

4、ReentrantReadWriteLock

ReentrantReadWriteLock 里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。下面通过几个例子来看一下ReentrantReadWriteLock具体用法。假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:

public class Test {
    public static void main(String[] args)  {
        final Test test = new Test();

        new Thread("A"){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();

        new Thread("B"){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();

    }  

    public synchronized void get(Thread thread) {
        long start = System.currentTimeMillis();
        System.out.println("线程"+ thread.getName()+"开始读操作...");
        while(System.currentTimeMillis() - start <= 1) {
            System.out.println("线程"+ thread.getName()+"正在进行读操作...");
        }
        System.out.println("线程"+ thread.getName()+"读操作完毕...");
    }
}/* Output: 
        线程A开始读操作...
        线程A正在进行读操作...
        ...
        线程A正在进行读操作...
        线程A读操作完毕...
        线程B开始读操作...
        线程B正在进行读操作...
        ...
        线程B正在进行读操作...
        线程B读操作完毕...
 *///:~

这段程序的输出结果会是,直到线程A执行完读操作之后,才会打印线程B执行读操作的信息。而改成使用读写锁的话:

public class Test {
    private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

    public static void main(String[] args) {
        final Test test = new Test();

        new Thread("A") {
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();

        new Thread("B") {
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
    }

    public void get(Thread thread) {
        rwl.readLock().lock(); // 在外面获取锁
        try {
            long start = System.currentTimeMillis();
            System.out.println("线程" + thread.getName() + "开始读操作...");
            while (System.currentTimeMillis() - start <= 1) {
                System.out.println("线程" + thread.getName() + "正在进行读操作...");
            }
            System.out.println("线程" + thread.getName() + "读操作完毕...");
        } finally {
            rwl.readLock().unlock();
        }
    }
}/* Output: 
        线程A开始读操作...
        线程B开始读操作...
        线程A正在进行读操作...
        线程A正在进行读操作...
        线程B正在进行读操作...
        ...
        线程A读操作完毕...
        线程B读操作完毕...
 *///:~

我们可以看到,线程A和线程B在同时进行读操作,这样就大大提升了读操作的效率。不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程也会一直等待释放写锁。

5、Lock和synchronized的选择

总的来说,Lock和synchronized有以下几点不同:

  • (1) Lock是一个接口,是JDK层面的实现;而synchronized是Java中的关键字,是Java的内置特性,是JVM层面的实现;

  • (2) synchronized 在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;

  • (3) Lock 可以让等待锁的线程响应中断,而使用synchronized时,等待的线程会一直等待下去,不能够响应中断;

  • (4) 通过Lock可以知道有没有成功获取锁,而synchronized却无法办到;

  • (5) Lock可以提高多个线程进行读操作的效率。

在性能上来说,如果竞争资源不激烈,两者的性能是差不多的。而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。

三. 锁的相关概念介绍

1、可重入锁

如果锁具备可重入性,则称作为 可重入锁 。像 synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了 锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。

class MyClass {    public synchronized void method1() {
        method2();
    }    public synchronized void method2() {

    }
}

上述代码中的两个方法method1和method2都用synchronized修饰了。假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是,这就会造成死锁,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。

2、可中断锁

顾名思义,可中断锁就是可以响应中断的锁。在Java中,synchronized就不是可中断锁,而Lock是可中断锁。
如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。在前面演示tryLock(long time, TimeUnit unit)和lockInterruptibly()的用法时已经体现了Lock的可中断性。

3、公平锁

公平锁即 尽量 以请求锁的顺序来获取锁。比如,同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。而非公平锁则无法保证锁的获取是按照请求锁的顺序进行的,这样就可能导致某个或者一些线程永远获取不到锁。

在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。而对于ReentrantLock 和 ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。

看下面两个例子:

Case : 公平锁

public class RunFair {    public static void main(String[] args) throws InterruptedException {
        final Service service = new Service(true);     // 公平锁,设为 true
        Runnable runnable = new Runnable() {
            @Override            public void run() {
                System.out.println("★线程" + Thread.currentThread().getName()
                        + "运行了");
                service.serviceMethod();
            }
        };

        Thread[] threadArray = new Thread[10];        for (int i = 0; i < 10; i++) 
            threadArray[i] = new Thread(runnable);        for (int i = 0; i < 10; i++) 
            threadArray[i].start(); 
    }
}class Service {    private ReentrantLock lock;    public Service(boolean isFair) {
        super();        lock = new ReentrantLock(isFair);
    }    public void serviceMethod() {        try {            lock.lock();
            System.out.println("ThreadName=" + Thread.currentThread().getName()
                    + "获得锁定");
        } finally {            lock.unlock();
        }
    }
}/* Output: 
        ★线程Thread-0运行了
        ★线程Thread-1运行了
        ThreadName=Thread-1获得锁定
        ThreadName=Thread-0获得锁定
        ★线程Thread-2运行了
        ThreadName=Thread-2获得锁定
        ★线程Thread-3运行了
        ★线程Thread-4运行了
        ThreadName=Thread-4获得锁定
        ★线程Thread-5运行了
        ThreadName=Thread-5获得锁定
        ThreadName=Thread-3获得锁定
        ★线程Thread-6运行了
        ★线程Thread-7运行了
        ThreadName=Thread-6获得锁定
        ★线程Thread-8运行了
        ★线程Thread-9运行了
        ThreadName=Thread-7获得锁定
        ThreadName=Thread-8获得锁定
        ThreadName=Thread-9获得锁定
*///:~

Case: 非公平锁

public class RunFair {    public static void main(String[] args) throws InterruptedException {        final Service service = new Service(false);  // 非公平锁,设为 false
        ...
}/* Output: 
        ★线程Thread-0运行了
        ThreadName=Thread-0获得锁定
        ★线程Thread-2运行了
        ThreadName=Thread-2获得锁定
        ★线程Thread-6运行了
        ★线程Thread-1运行了
        ThreadName=Thread-6获得锁定
        ★线程Thread-3运行了
        ThreadName=Thread-3获得锁定
        ★线程Thread-7运行了
        ThreadName=Thread-7获得锁定
        ★线程Thread-4运行了
        ThreadName=Thread-4获得锁定
        ★线程Thread-5运行了
        ThreadName=Thread-5获得锁定
        ★线程Thread-8运行了
        ThreadName=Thread-8获得锁定
        ★线程Thread-9运行了
        ThreadName=Thread-9获得锁定
        ThreadName=Thread-1获得锁定
*///:~

根据上面代码演示结果我们可以看出(线程数越多越明显),在公平锁案例下,多个线程在等待一个锁时,一般而言,等待时间最久的线程(最先请求的线程)会获得该锁。而在非公平锁例下,则无法保证锁的获取是按照请求锁的顺序进行的。

另外, 在ReentrantLock类中定义了很多方法,举几个例子:

  • isFair() //判断锁是否是公平锁

  • isLocked() //判断锁是否被任何线程获取了

  • isHeldByCurrentThread() //判断锁是否被当前线程获取了

  • hasQueuedThreads() //判断是否有线程在等待该锁

  • getHoldCount() //查询当前线程占有lock锁的次数

  • getQueueLength() // 获取正在等待此锁的线程数

  • getWaitQueueLength(Condition condition) // 获取正在等待此锁相关条件condition的线程数在ReentrantReadWriteLock中也有类似的方法,同样也可以设置为公平锁和非公平锁。不过要记住,ReentrantReadWriteLock并未实现Lock接口,它实现的是ReadWriteLock接口。

4.读写锁

读写锁将对临界资源的访问分成了两个锁,一个读锁和一个写锁。正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。可以通过readLock()获取读锁,通过writeLock()获取写锁。上一节已经演示过了读写锁的使用方法,在此不再赘述。



以上是使用Java並發開發Lock框架詳細說明的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn