前言:這次整理寫一篇關於rabbitMQ的,感覺rabbitMQ難度是提升不少。這篇部落格會插入一些英文講解,不過不難理解的。 rabbitMQ的下載與安裝,請參考redis&rabbitMQ安裝。
rabbitMQ是訊息佇列;想想之前的我們學過佇列queue:threading queue(執行緒queue,多個執行緒之間進行資料互動)、進程Queue(父進程與子進程進行交互或同屬於同一父進程下的多個子進程進行交互);如果兩個獨立的程序,那麼之間是不能通過queue進行交互的,這時候我們就需要一個中間代理即rabbitMQ.
由上圖可知,資料是先發給exchange交換器,exchage再發給對應佇列。 pika模組是python對rabbitMQ的API介面。接收端有一個回呼函數,一接收到資料就呼叫該函數。一則訊息被一個消費者接收後,該訊息就從佇列刪除。 OK,了解上面的知識後,先來看看一個簡單的rabbitMQ列隊通信。
send
import pika #连上rabbitMQ connection=pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel=connection.channel() #生成管道,在管道里跑不同的队列 #声明queue channel.queue_declare(queue='hello1') #n RabbitMQ a message can never be sent directly to the queue,it always needs to go through an exchange. #向队列里发数据 channel.basic_publish(exchange='', #先把数据发给exchange交换器,exchage再发给相应队列 routing_key='hello1', #向"hello'队列发数据 body='HelloWorld!!') #发的消息 print("[x]Sent'HelloWorld!'") connection.close()receive端:
import pika connection=pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel=connection.channel() # You may ask why we declare the queue again ‒ we have already declared it in our previous code. # We could avoid that if we were sure that the queue already exists. For example if send.py program # was run before. But we're not yet sure which program to run first. In such cases it's a good # practice to repeat declaring the queue in both programs. channel.queue_declare(queue='hello1')#声明队列,保证程序不出错 def callback(ch,method,properties,body): print("-->ch",ch) print("-->method",method) print("-->properties",properties) print("[x] Received %r" % body) #一条消息被一个消费者接收后,该消息就从队列删除 channel.basic_consume(callback, #回调函数,一接收到消息就调用回调函数 queue='hello1', no_ack=False) #消费完毕后向服务端发送一个确认,默认为False print('[*] Waiting for messages.To exit press CTRL+C') channel.start_consuming()
##運行結果:
註解相信是看得懂的~)
rabbitMQ_1_send.py [x] Sent 'Hello World!' rabbitMQ_2_receive.py [*] Waiting for messages. To exit press CTRL+C -->ch <pika.adapters.blocking_connection.BlockingChannel object at 0x000000000250AEB8> -->method <Basic.Deliver(['consumer_tag=ctag1.f9533f4c8c59473c8096817670ad69d6', 'delivery_tag=1', 'exchange=', 'redelivered=False', 'routing_key=hello1'])> -->properties <BasicProperties> [x] Received b'Hello World!!'
經過深入的測試,有以下兩個發現:
運行多個(eg:3個)接收資料的客戶端,再運行發送端,客戶端1收到數據,再運行發送端,客戶端2收到數據,再運行發送端,客戶端3收到數據。 RabbitMQ會預設把p發的訊息依序分發給各個消費者(c),跟負載平衡
差不多。#在看上面的例子,你會發現有一句程式碼no_ack=False (
消費完畢後向服務端發送一個確認,預設為False),以我英語四級飄過的水平,看完下面關於ack的講解感覺寫得很牛啊!!於是分享一下:
###Doing a task can take a few seconds. You may wonder what happens if one of the consumers starts a long task and dies with it only partly done. With our ###current### code once RabbitMQ delivers message to the customer it immediately removes it from memory. In this case, if you kill a worker weves it from memory. In this case, if you kill a worker weves lose the message. processing. We'll also lose all the messages that were dispatched to this particular worker but were not yet han###dl###ed.############But we don't want to lose any tasks. If a worker dies, we'd like the task to be delivered to another worker.############In ###ord###er to make sure a message is never lost, RabbitMQ supports message acknowledgments. An ack(nowledgement) is sent back from the consumer to tell RabbitMQ that a particular message had been received, processed and that RabbitMQ is ###delete received, processed and that RabbitMQ is ##. #如果消費者在沒有發送 ack 的情況下死亡(其通道關閉、連接關閉或 TCP 連線遺失),RabbitMQ 將了解訊息未完全處理並將重新排隊。如果同時時間還有其他消費者在線,那麼它會快速將其重新傳遞給另一個消費者。這樣你就可以確保沒有訊息遺失,即使工作人員偶爾會死掉。當消費者死亡時,RabbitMQ 將重新發送訊息。即使處理訊息需要非常非常長的時間也沒關係。在前面的範例中,我們透過 no_ack=True 標誌明確關閉它們。一旦我們完成了任務,就該刪除這個標誌並向工作人員發送適當的確認了。使用CTRL+C ,不會遺失任何內容。在worker死亡後不久,所有未確認的訊息都會被重新發送。消費者接收任務A並處理,處理完成後生產者將訊息佇列中的任務A刪除。生產者將訊息將訊息佇列中的任務A刪除。一個ack給生產者!生產者收到ack後就明白任務A已被成功處理,接下來才從訊息佇列中將任務A刪除,如果沒有收到ack,就需要把任務A發送給下一個消費者,直到任務A成功處理。者生產數據,消費者再啟動是可以接收數據的。
eg:訊息在傳輸過程中rabbitMQ伺服器宕機了,會發現之前的訊息佇列不存在了,接下來我們就要用到訊息持久化,
訊息持久化會讓佇列不會隨著伺服器宕機而消失,會永久的保存。 下面看下關於訊息持久化的英文講解:##我們已經學會如何確保即使消費者死亡,任務也不會遺失(預設情況下,如果想停用,請使用no_ack=True)。但是如果RabbitMQ 伺服器s#top
s,我們的任務仍然會遺失。 ,除非你告訴它不是。為了確保訊息不會遺失,需要做兩件事:我們需要將佇列和訊息標記為持久。隊列。為此,我們需要將其宣告為 Durable:
1channel.queue_declare(queue='hello', Durable=True)
雖然這個指令本身是正確的,但是在我們的set
up中卻不行。這是因為我們已經定義了一個名為 hello 的佇列,它是不持久的。1channel.queue_declare(queue='task_queue', Durable=True)
此queue_declare變更需要套用至生產者和消費者程式碼。 At that point we're sure that the task_queue queue won't be lost even if RabbitMQ restarts. Now we need to mark our messages as persistent - by supplying a delivery_mode property with a value 2. 1 channel.basic_publish(exchange='', 上面的英文对消息持久化讲得很好。消息持久化分为两步: 持久化队列。通过代码实现持久化hello队列:channel.queue_declare(queue='hello', durable=True) 持久化队列中的消息。通过代码实现:properties=pika.BasicProperties( delivery_mode = 2, ) 这里有个点要注意下: 如果你在代码中已实现持久化hello队列与队列中的消息。那么你重启rabbitMQ后再次运行代码可能会爆错! 因为: RabbitMQ doesn't allow you to redefine an existing queue with different parameters and will return an error. 为了解决这个问题,可以声明一个与重启rabbitMQ之前不同的队列名(queue_name). 如果Rabbit只管按顺序把消息发到各个消费者身上,不考虑消费者负载的话,很可能出现,一个机器配置不高的消费者那里堆积了很多消息处理不完,同时配置高的消费者却一直很轻松。为解决此问题,可以在各个消费者端,配置perfetch=1,意思就是告诉RabbitMQ在我这个消费者当前消息还没处理完的时候就不要再给我发新消息了。 带消息持久化+公平分发的完整代码 生产者端: 消费者端: 我在运行上面程序时对消费者端里回调函数的一句代码(ch.basic_ack(delivery_tag =method.delivery_tag))十分困惑。这句代码去掉消费者端也能照样收到消息啊。这句代码有毛线用处?? 生产者端消息持久后,需要在消费者端加上(ch.basic_ack(delivery_tag =method.delivery_tag)): 保证消息被消费后,消费端发送一个ack,然后服务端从队列删除该消息. 之前的例子都基本都是1对1的消息发送和接收,即消息只能发送到指定的queue里,但有些时候你想让你的消息被所有的queue收到,类似广播的效果,这时候就要用到exchange了。PS:有兴趣的了解redis的发布与订阅,可以看看我写的博客python之redis。 An exchange is a very simple thing. On one side it receives messages from producers and the other side it pushes them to queues. The exchange must know exactly what to do with a message it receives. Should it be appended to a particular queue? Should it be appended to many queues? Or should it get discarded(丢弃). The rules for that are defined by the exchange type. Exchange在定义的时候是有类型的,以决定到底是哪些Queue符合条件,可以接收消息 fanout: 所有bind到此exchange的queue都可以接收消息 direct: 通过routingKey和exchange决定的那个唯一的queue可以接收消息 topic:所有符合routingKey(此时可以是一个表达式)的routingKey所bind的queue可以接收消息 表达式符号说明: #代表一个或多个字符,*代表任何字符 下面我分别讲下fanout,direct,topic: 1、fanout fanout: 所有bind到此exchange的queue都可以接收消息 send端: receive端: 有两个点要注意下: fanout-广播,send端的routing_key='', #fanout的话为空(默认) receive端有一句代码:result=channel.queue_declare(exclusive=True),作用:不指定queue名字(为了收广播),rabbitMQ会随机分配一个queue名字,exclusive=True会在使用此queue的消费者断开后,自动将queue删除。 2、有选择的接收消息(exchange type=direct) RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。 send端: receive端: 其实最开始我看代码是一脸懵逼的~ 下面是我在cmd进行测试的截图(配合着截图看会容易理解些),一个send端,两个receive端(先起receive端,再起receive端): send端: receive端-1: receive端-2: 3、更细致的消息过滤topic(供参考) Although using the direct exchange improved our system, it still has limitations - it can't do routing based on multiple criteria. In our logging system we might want to subscribe to not only logs based on severity, but also based on the source which emitted the log. You might know this concept from the syslog unix tool, which routes logs based on both severity (info/warn/crit...) and facility (auth/cron/kern...). That would give us a lot of flexibility - we may want to listen to just critical errors coming from 'cron' but also all logs from 'kern'. 感觉我英文水平不高啊~,我对照着垃圾有道翻译,加上自己的理解,大概知道上面在讲什么。 举例: 如果是系统的错误,就把信息发送到A,如果是MySQL的错误,就把信息发送到B。但是对B来说,想实现接收MySQL的错误信息,可以用有选择的接收消息(exchange type=direct),让关键字为error就实现了啊!现在B有个需求:不是所有的错误信息都接收,只接收指定的错误。在某种信息再进行过滤,这就是更细致的消息过滤topic。 send端: receive端: RPC的概念可看我百度的(其实就类似我之前做的FTP,我从客户端发一个指令,服务端返回相关信息): 下面重点讲下RPC通信,我刚开始学挺难的,学完之后感觉RPC通信的思想很有启发性,代码的例子写得也很牛!! client端发的消息被server端接收后,server端会调用callback函数,执行任务后,还需要把相应的信息发送到client,但是server如何将信息发还给client?如果有多个client连接server,server又怎么知道是要发给哪个client?? RPC-server默认监听rpc_queue.肯定不能把要发给client端的信息发到rpc_queue吧(rpc_queue是监听client端发到server端的数据)。 合理的方案是server端另起一个queue,通过queue将信息返回给对应client。但问题又来了,queue是server端起的,故client端肯定不知道queue_name,连queue_name都不知道,client端接收毛线的数据?? 解决方法: 客户端在发送指令的同时告诉服务端:任务执行完后,数据通过某队列返回结果。客户端监听该队列就OK了。 client端: server端:
2 routing_key="task_queue",
3 body=message,
4 properties=pika.BasicProperties(
5 delivery_mode = 2, # make message persistent
6 ))
四、消息公平分发
import pika
import sys
connection =pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='task_queue', durable=True) #队列持久化
message = ' '.join(sys.argv[1:]) or"Hello World!"
channel.basic_publish(exchange='',
routing_key='task_queue',
body=message,
properties=pika.BasicProperties(
delivery_mode = 2, # make message persistent消息持久化
))
print(" [x] Sent %r" % message)
connection.close()
#!/usr/bin/env python
import pika
import time
connection =pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='task_queue', durable=True)
print(' [*] Waiting for messages. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
time.sleep(body.count(b'.'))
print(" [x] Done")
ch.basic_ack(delivery_tag =method.delivery_tag)
channel.basic_qos(prefetch_count=1)
channel.basic_consume(callback,
queue='task_queue')
channel.start_consuming()
五、消息发布与订阅
例:#.a会匹配a.a,aa.a,aaa.a等
*.a会匹配a.a,b.a,c.a等
注:使用RoutingKey为#,Exchange Type为topic的时候相当于使用fanoutimport pika
import sys
connection=pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel=connection.channel()
channel.exchange_declare(exchange='logs',
type='fanout')
message=''.join(sys.argv[1:])or"info:HelloWorld!"
channel.basic_publish(exchange='logs',
routing_key='', #fanout的话为空(默认)
body=message)
print("[x]Sent%r"%message)
connection.close()
import pika
connection=pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel=connection.channel()
channel.exchange_declare(exchange='logs',type='fanout')
#不指定queue名字(为了收广播),rabbit会随机分配一个queue名字,
#exclusive=True会在使用此queue的消费者断开后,自动将queue删除
result=channel.queue_declare(exclusive=True)
queue_name=result.method.queue
#把声明的queue绑定到交换器exchange上
channel.queue_bind(exchange='logs',
queue=queue_name)
print('[*]Waitingforlogs.ToexitpressCTRL+C')
def callback(ch,method,properties,body):
print("[x]%r"%body)
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming()
import pika
import sys
connection =pika.BlockingConnection(pika.ConnectionParameters(
host='localh'))ost
channel = connection.channel()
channel.exchange_declare(exchange='direct_logs',
type='direct')
severity = sys.argv[1] iflen(sys.argv) > 1 else 'info'
message = ' '.join(sys.argv[2:]) or'Hello World!'
channel.basic_publish(exchange='direct_logs',
routing_key=severity, #关键字不为空,告知消息发送到哪里(info,error~)
body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close()
import pika
import sys
connection =pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='direct_logs',
type='direct')
result =channel.queue_declare(exclusive=True)
queue_name = result.method.queue
severities = sys.argv[1:]
if not severities:
sys.stderr.write("Usage: %s [info] [warning] [error]\n" %sys.argv[0])
sys.exit(1)
for severity in severities:
channel.queue_bind(exchange='direct_logs',
queue=queue_name,
routing_key=severity)
print(' [*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] %r:%r" %(method.routing_key, body))
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming()
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='topic_logs',
type='topic') #类型为topic
routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='topic_logs',
routing_key=routing_key,
body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close()
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='topic_logs',
type='topic')
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
binding_keys = sys.argv[1:]
if not binding_keys:
sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])
sys.exit(1)
for binding_key in binding_keys:
channel.queue_bind(exchange='topic_logs',
queue=queue_name,
routing_key=binding_key)
print(' [*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body))
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming()
六、RPC(Remote Procedure Call)
RPC采用客户机/服务器模式。请求程序就是一个客户机,而服务提供程序就是一个服务器。首先,客户机调用进程发送一个有进程参数的调用信息到服务进程,然后等待应答信息。在服务器端,进程保持睡眠状态直到调用信息的到达为止。当一个调用信息到达,服务器获得进程参数,计算结果,发送答复信息,然后等待下一个调用信息,最后,客户端调用进程接收答复信息,获得进程结果,然后调用执行继续进行。
import pika
import uuid
class FibonacciRpcClient(object):
def init(self):
self.connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
self.channel = self.connection.channel()
#随机建立一个queue,为了监听返回的结果
result = self.channel.queue_declare(exclusive=True)
self.callback_queue = result.method.queue ##队列名
self.channel.basic_consume(self.on_response, #一接收客户端发来的指令就调用回调函数on_response
no_ack=True,
queue=self.callback_queue)
def on_response(self, ch, method, props, body): #回调
#每条指令执行的速度可能不一样,指令1比指令2先发送,但可能指令2的执行结果比指令1先返回到客户端,
#此时如果没有下面的判断,客户端就会把指令2的结果误认为指令1执行的结果
if self.corr_id == props.correlation_id:
self.response = body
def call(self, n):
self.response = None ##指令执行后返回的消息
self.corr_id = str(uuid.uuid4()) ##可用来标识指令(顺序)
self.channel.basic_publish(exchange='',
routing_key='rpc_queue', #client发送指令,发到rpc_queue
properties=pika.BasicProperties(
reply_to=self.callback_queue, #将指令执行结果返回到reply_to队列
correlation_id=self.corr_id,
),
body=str(n))
while self.response is None:
self.connection.process_data_events() #去queue接收数据(不阻塞)
return int(self.response)
fibonacci_rpc = FibonacciRpcClient()
print(" [x] Requesting fib(30)")
response = fibonacci_rpc.call(30)
print(" [.] Got %r" % response)
import pika
import time
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='rpc_queue')
def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n - 1) + fib(n - 2)
def on_request(ch, method, props, body):
n = int(body)
print(" [.] fib(%s)" % n)
response = fib(n) #从客户端收到的消息
ch.basic_publish(exchange='', ##服务端发送返回的数据到props.reply_to队列(客户端发送指令时声明)
routing_key=props.reply_to, #correlation_id (随机数)每条指令都有随机独立的标识符
properties=pika.BasicProperties(correlation_id= \
props.correlation_id),
body=str(response))
ch.basic_ack(delivery_tag=method.delivery_tag) #客户端持久化
channel.basic_qos(prefetch_count=1) #公平分发
channel.basic_consume(on_request, #一接收到消息就调用on_request
queue='rpc_queue')
print(" [x] Awaiting RPC requests")
channel.start_consuming()
以上是深入了解python之rabbitMQ使用的詳細內容。更多資訊請關注PHP中文網其他相關文章!