搜尋
首頁後端開發Python教學詳解python redis使用方法

這篇文章詳解python redis使用方法

1,安裝

#pip install redis

# #2,基本上使用

使用:
import redis##r = redis.Redis(host='localhost', port=6379, db=0)
r['test'] = 'test' #或可以r.
set#( 'test', 'test') 設定keyr.get('test') #取得test的值
##r.delete
('test') #刪除這個keyr.flush
db() #清空資料庫r.keys() #列出所有key
r.exists('test') #偵測這個key是否存在
##r.dbsize( ) #資料庫中多少個條數

>>> import redis

>>> pool = redis.ConnectionPool(host='localhost', port=6379, db=0)

>>> r = redis.StrictRedis(connection_pool = pool)

>>> r.set('foo', 'bar')

True

>>> r.get('foo')

'bar'

3.API參考

Redis 官方文件詳細解釋了每個指令(http://www. php.cn/)。 redis-py 提供了兩個實作這些命令的用戶端類別。 StrictRedis 類別試圖遵守官方的命令語法,但也有幾點例外:·SELECT:沒有實現。請參閱下面“線程

安全性

”部分的解釋。

·DEL:’del’ 是 Python 語法的保留關鍵字。因此redis-py 使用 「delete」 代替。 ·CONFIG GET|SET:分別以 config_get 和 config_set 實作。

·MULTI/EXEC:作為 Pipeline 類別的一部分來實現。若在呼叫pipeline 方法時指定use_trans

action

=True,在執行 pipeline 時會以 MULTI 及 EXEC 封裝 pipeline 的操作。參見下面 Pipeline 部分。

·SUBSCRIBE/LISTEN: 和 pipeline 類似,由於需要下層的連線維持

狀態

, PubSub 也實現成單獨的類別。呼叫 Redis 客戶端的 pubsub 方法傳回一個 PubSub 的實例,並透過這個實例可以訂閱頻道或偵聽訊息。兩個類別(StrictRedis 和 PubSub 類別)都可以發布(PUBLISH)訊息。 除了上面的改變,StrictRedis 的子類別 Redis,提供了舊版 redis-py 的相容:·LREM:參數 'num' 和 'value' 的順序交換了一下,這樣'num' 可以提供缺省值 0.

·ZADD:實現時 score 和 value 的順序不小心弄反了,後來有人用了,就這樣了

·SETEX :

time

 和 value 的順序反了

註:最好不要用 Redis,這個類別只是做相容用的4.詳細說明

#4.1 連線池

在後台,redis-py 採用了連線池(ConnectionPool)來管理對 Redis 伺服器的連線。缺省情況下,每個Redis 實例都會建立自己的連線池。也可以採用向 Redis 類別的 connection_pool 參數傳遞已建立的連接池的方式。透過這種方式,可以實現客戶端分片或精確控制連線的管理:
>>> pool = redis.ConnectionPool(host='localhost', port=6379, db=0)

>>> r = redis.StrictRedis(connection_pool=pool)

4.2 连接

ConnectionPool 管理一组 Connection 实例。redis-py 提供两种类型的 Connection。缺省情况下,Connection 是一个普通的 TCP 连接。 UnixDomainSocketConnection 允许和服务器运行在同一个设备上的客户端通过 unix 套接字进行连接。要使用 UnixDomainSocketConnection 连接, 只需要通过unix_socket_path 参数传递一个 unix 套接字文件的字符串。另外,确保redis.conf 文件配置了unixsocket 参数(缺省情况下是注释掉的):

>>> r = redis.StrictRedis(unix_socket_path='/tmp/redis.sock')

也可以自己创建 Connection 子类。这个特性可以在使用异步框架时用于控制 socket 的行为。要使用自己的Connection 初始化客户端类,需要创建一个连接池,通 connection_class 参数把自己的类传递进去。传递的其它关键字参数会在初始化时传递给自定义的类:

>>> pool = redis.ConnectionPool(connection_class=YourConnectionClass, your_arg='...', ...)

4.3 分析器

分析类提供了控制如何对 Redis 服务器的响应进行分析的途径。redis-py 提供了两个分析类, PythonParser和 HiredisParser。缺省情况下,如果安装了 hiredis 模块, redis-py 会尝试使用 HiredisParser,否则使用 PythonParser。

Hiredis 是由 Redis 核心团队维护的 C 库。 Pieter Noordhuis 创建了 Python 的实现。分析 Redis 服务器的响应时,Hiredis 可以提供 10 倍的速度提升。性能提升在获取大量数据时优为明显,比如 LRANGE 和SMEMBERS 操作。

和 redis-py 一样,Hiredis 在 Pypi 中就有,可以通过 pip 或 easy_install 安装:

$ pip install hiredis

或:

$ easy_install hiredis

4.4 响应回调函数

客户端类使用一系列回调函数来把 Redis 响应转换成合适的 Python 类型。有些回调函数在 Redis 客户端类的字典 RESPONSE_CALLBACKS 中定义。

通过 set_response_callback 方法可以把自定义的回调函数添加到单个实例。这个方法接受两个参数:一个命令名和一个回调函数。通过这种方法添加的回调函数只对添加到的对象有效。要想全局定义或重载一个回调函数,应该创建 Redis 客户端的子类并把回调函数添加到类的 RESPONSE_CALLBACKS(原文误为REDIS_CALLBACKS) 中。

响应回调函数至少有一个参数:Redis 服务器的响应。要进一步控制如何解释响应,也可以使用关键字参数。这些关键字参数在对 execute_command 的命令调用时指定。通过 “withscores” 参数,ZRANGE 演示了回调函数如何使用关键字参数。

4.5 线程安全

Redis 客户端实例可以安全地在线程间共享。从内部实现来说,只有在命令执行时才获取连接实例,完成后直接返回连接池,命令永不修改客户端实例的状态。

但是,有一点需要注意:SELECT 命令。SELECT 命令允许切换当前连接使用的数据库。新的数据库保持被选中状态,直到选中另一个数据库或连接关闭。这会导致在返回连接池时,连接可能指定了别的数据库。

因此,redis-py 没有在客户端实例中实现 SELECT 命令。如果要在同一个应用中使用多个 Redis 数据库,应该给第一个数据库创建独立的客户端实例(可能也需要独立的连接池)。

在线程间传递 PubSub 和 Pipeline 对象是不安全的。

4.6 Pipeline

Pipeline 是 StrictRedis 类的子类,支持在一个请求里发送缓冲的多个命令。通过减少客户端和服务器之间往来的数据包,可以大大提高命令组的性能。

Pipeline 的使用非常简单:

>>> r = redis.Redis(...)

>>> r.set('bing', 'baz')

>>> # Use the pipeline() method to create a pipeline instance

>>> pipe = r.pipeline()

>>> # The following SET commands are buffered

>>> pipe.set('foo', 'bar')

>>> pipe.get('bing')

>>> # the EXECUTE call sends all bufferred commands to the server, returning

>>> # a list of responses, one for each command.

>>> pipe.execute()

[True, 'baz']

为了方便使用,所有缓冲到 pipeline 的命令返回 pipeline 对象本身。因此调用可以链起来:

>>> pipe.set('foo', 'bar').sadd('faz', 'baz').incr('auto_number').execute()

[True, True, 6]

另外,pipeline 也可以保证缓冲的命令组做为一个原子操作。缺省就是这种模式。要使用命令缓冲,但禁止pipeline 的原子操作属性,可以关掉 transaction:

>>> pipe = r.pipeline(transaction=False)

一个常见的问题是:在进行原子事务操作前需要从 Redis 中获取事务中要用的数据。比如,假设 INCR 命令不存在,但我们需要用 Python 创建一个原子版本的 INCR。

一个不成熟的实现是获取值(GET),在 Python 中增一, 设置(SET)新值。但是,这不是原子操作,因为多个客户端可能在同一时间做这件事,每一个都通过 GET 获取同一个值。

WATCH 命令提供了在开始事务前监视一个或多个键的能力。如果这些键中的任何一个在执行事务前发生改变,整个事务就会被取消并抛出 WatchError 异常。要实现我们的客户 INCR 命令,可以按下面的方法操作:

>>> with r.pipeline() as pipe:

...     while 1:

...         try:

...             # 对序列号的键进行 WATCH

...             pipe.watch('OUR-SEQUENCE-KEY')

...             # WATCH 执行后,pipeline 被设置成立即执行模式直到我们通知它

...             # 重新开始缓冲命令。

...             # 这就允许我们获取序列号的值

...             current_value = pipe.get('OUR-SEQUENCE-KEY')

...             next_value = unicode(int(current_value) + 1)

...             # 现在我们可以用 MULTI 命令把 pipeline 设置成缓冲模式

...             pipe.multi()

...             pipe.set('OUR-SEQUENCE-KEY', next_value)

...             # 最后,执行 pipeline (set 命令)

...             pipe.execute()

...             # 如果执行时没有抛出 WatchError,我们刚才所做的确实“原子地”

...             # 完成了

...             break

...         except WatchError:

...             # 一定是其它客户端在我们开始 WATCH 和执行 pipeline 之间修改了

...             # 'OUR-SEQUENCE-KEY',我们最好的选择是重试

...             continue

注意,因为在整个 WATCH 过程中,Pipeline 必须绑定到一个连接,必须调用 reset() 方法确保连接返回连接池。如果 Pipeline 用作 Context Manager(如上面的例子所示), reset() 会自动调用。当然,也可以用手动的方式明确调用 reset():

>>> pipe = r.pipeline()

>>> while 1:

...     try:

...         pipe.watch('OUR-SEQUENCE-KEY')

...         current_value = pipe.get('OUR-SEQUENCE-KEY')

...         next_value = unicode(int(current_value) + 1)

...         pipe.multi()

...         pipe.set('OUR-SEQUENCE-KEY', next_value)

...         pipe.execute()

...         break

...     except WatchError:

...         continue

...     finally:

...         pipe.reset()

 重点(译者注):

·WATCH 执行后,pipeline 被设置成立即执行模式

·用 MULTI 命令把 pipeline 设置成缓冲模式

·要么使用 with,要么显式调用 reset()

有一个简便的名为“transaction”的方法来处理这种处理和在 WatchError 重试的模式。它的参数是一个可执行对象和要 WATCH 任意个数的键,其中可执行对象接受一个 pipeline 对象做为参数。上面的客户端 INCR 命令可以重写如下(更可读):

>>> def client_side_incr(pipe):

...     current_value = pipe.get('OUR-SEQUENCE-KEY')

...     next_value = unicode(int(current_value) + 1)

...     pipe.multi()

...     pipe.set('OUR-SEQUENCE-KEY', next_value)

>>> 

>>> r.transaction(client_side_incr, 'OUR-SEQUENCE-KEY')

以上是詳解python redis使用方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python:自動化,腳本和任務管理Python:自動化,腳本和任務管理Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python和時間:充分利用您的學習時間Python和時間:充分利用您的學習時間Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python:遊戲,Guis等Python:遊戲,Guis等Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具