首頁  >  文章  >  Java  >  Java集合之WeakHashMap詳解

Java集合之WeakHashMap詳解

黄舟
黄舟原創
2017-03-13 17:44:251698瀏覽

WeakHashMap繼承於AbstractMap,同時實作了Map介面

和HashMap一樣,WeakHashMap也是散列表,儲存的內容也是鍵值對key-value映射,並且鍵和值都可以是null。 WeakHashMap的鍵都是弱鍵,給定一個鍵,其映射的存在並不阻止垃圾回收器對該鍵的丟棄,使該鍵成為可終止,然後被回收。弱鍵的原理就是Entry繼承了WeakReference接口,當GC 回收時,」弱鍵「同時也會被加入到ReferenceQueue佇列中。

實現的步驟:

(1)新建WeakHashMap,將鍵值對加入WeakHashMap中,WeakHashMap同樣也是透過table保存Entry(鍵值對),每個Entry其實是一個單向鍊錶。

(2)當某個弱鍵不再被其他物件引用,並被GC回收時,在GC回收該弱鍵時,這個弱鍵也同時會被加入到ReferenceQueue(queue)隊列中。

(3)下次需要操作WeakHashMap時,會先同步table和queue。 table中保存了全部的鍵值對,而queue中保存被GC回收的鍵值對,同時會刪除table中被GC回收的鍵值對。 WeakHashMap也不是線程安全的。

WeakHashMap的關係圖:



(1)WeakHashMap繼承於AbstractMap,並且實作了Map接口。

(2)WeakHashMap是哈希表,它的鍵時弱鍵,WeakHashMap同樣有幾個重要的成員變數:table,size,threshold,loadFactor,modCount,queue。

table一個Entry[]陣列類型,而每個Entry其實就是一個單向鍊錶,雜湊表的key-value鍵值對都是儲存在Entry數組中的。

size是Hashtable的大小,它是Hashtable保存的鍵值對的數量。

threshold是Hashtable的閾值,用來判斷是否需要調整Hashtable的容量。 threshold的值=」容量*載入因子「

loadFactor載入因子

modCount是用來實現fail-fast機制

queue保存的是已經被GC清楚的弱引用的鍵。


WeakHashMap主要的函數


clear()
Object                 clone()
containsKey(Object key)
containsValue(Object value)
Set4e9674e4037f009f8f3f0cd5e931ebcf>       entrySet()
V                      get(Object key)
isEmpty()
Seta8093152e673feb7aba1828c43532094                 keySet()
V                      put(K keyV value)
putAll(Map01be8f78a2a2bd5803553d88c991c8f2 map)
V                      remove(Object key)
size()
Collectiona8093152e673feb7aba1828c43532094          values()

WeakHashMap的遍歷方式

(1)遍歷WeakHashMap的鍵值對:先根據entrySet()取得鍵值對集合,然後對集合透過迭代器Iterator遍歷得到鍵值。


Integer integ = Iterator iter = map.entrySet().iterator()(iter.hasNext()) 
{
    Map.Entry entry = (Map.Entry)iter.next()key = (String)entry.getKey()integ = (Integer)entry.getValue()}

(2)遍历WeakHashMap的键:首先通过keySet()获取WeakHashMap的键的set集合,通过Iterator迭代器遍历集合来获得键值。


String key = Integer integ = Iterator iter = map.keySet().iterator()(iter.hasNext()) {
    key = (String)iter.next()    integ = (Integer)map.get(key)}

(3)遍历WeakHashMap的值:首先通过values()获取WeakHashMap的value集合,然后对集合进行迭代获得数据。


Integer value = Collection c = map.values()Iterator iter= c.iterator()(iter.hasNext()) 
{
    value = (Integer)iter.next()}

WeakHashMap示例程序:


public class Hello {

    public static void main(String[] args) throws Exception {
        testWeakHashMapAPIs();
    }

    private static void testWeakHashMapAPIs()
    {
        // 初始化3个“弱键”
        String w1 = new String("one");
        String w2 = new String("two");
        String w3 = new String("three");
        // 新建WeakHashMap
        Map wmap = new WeakHashMap();
        // 添加键值对
        wmap.put(w1, "w1");
        wmap.put(w2, "w2");
        wmap.put(w3, "w3");

        // 打印出wmap
        System.out.printf("\nwmap:%s\n",wmap );

        // containsKey(Object key) :是否包含键key
        System.out.printf("contains key two : %s\n",wmap.containsKey("two"));
        System.out.printf("contains key five : %s\n",wmap.containsKey("five"));
        // containsValue(Object value) :是否包含值value
        System.out.printf("contains value 0 : %s\n",wmap.containsValue(new Integer(0)));
        // remove(Object key) : 删除键key对应的键值对
        wmap.remove("three");
        System.out.printf("wmap: %s\n",wmap );
        // ---- 测试 WeakHashMap 的自动回收特性 ----
        // 将w1设置null。
        // 这意味着“弱键”w1再没有被其它对象引用,调用gc时会回收WeakHashMap中与“w1”对应的键值对
        w1 = null;
        // 内存回收。这里,会回收WeakHashMap中与“w1”对应的键值对
        System.gc();
        // 遍历WeakHashMap
        Iterator iter = wmap.entrySet().iterator();
        while (iter.hasNext())
        {
            Map.Entry en = (Map.Entry)iter.next();
            System.out.printf("next : %s - %s\n",en.getKey(),en.getValue());
        }
        // 打印WeakHashMap的实际大小
        System.out.printf(" after gc WeakHashMap size:%s\n", wmap.size());
    }

}


运行结果:

wmap:{three=w3, one=w1, two=w2}
contains key two : true
contains key five : false
contains value 0 : false
wmap: {one=w1, two=w2}
next : two - w2
 after gc WeakHashMap size:1


基于Java8的WeakHashMap源代码:

public class WeakHashMap<K,V> extends AbstractMap<K,V>
        implements Map<K,V> {
    private static final int DEFAULT_INITIAL_CAPACITY = 16;//默认初始大小,必须是2的次幂
    private static final int MAXIMUM_CAPACITY = 1 << 30;//最大值2的30次方
    private static final float DEFAULT_LOAD_FACTOR = 0.75f;//加载因子
    Entry<K,V>[] table;
    private int size;//数目
    private int threshold;//阈值
    private final float loadFactor;//加载因子
    private final ReferenceQueue<Object> queue = new ReferenceQueue<>();//引用队列
    int modCount;//fail-fast
    @SuppressWarnings("unchecked")
    private Entry<K,V>[] newTable(int n) {
        return (Entry<K,V>[]) new Entry<?,?>[n];
    }
    //构造函数
    public WeakHashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Initial Capacity: "+
                    initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;

        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal Load factor: "+
                    loadFactor);
        int capacity = 1;
        while (capacity < initialCapacity)
            capacity <<= 1;
        table = newTable(capacity);
        this.loadFactor = loadFactor;
        threshold = (int)(capacity * loadFactor);
    }
    //初始值的构造函数
    public WeakHashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
    //构造函数
    public WeakHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
    }
    public WeakHashMap(Map<? extends K, ? extends V> m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                        DEFAULT_INITIAL_CAPACITY),
                DEFAULT_LOAD_FACTOR);
        putAll(m);
    }

    // internal utilities

    /**
     * Value representing null keys inside tables.
     */
    private static final Object NULL_KEY = new Object();

    /**
     * Use NULL_KEY for key if it is null.
     */
    private static Object maskNull(Object key) {
        return (key == null) ? NULL_KEY : key;
    }

    /**
     * Returns internal representation of null key back to caller as null.
     */
    static Object unmaskNull(Object key) {
        return (key == NULL_KEY) ? null : key;
    }

    /**
     * Checks for equality of non-null reference x and possibly-null y.  By
     * default uses Object.equals.
     */
    private static boolean eq(Object x, Object y) {
        return x == y || x.equals(y);
    }

    /**
     * Retrieve object hash code and applies a supplemental hash function to the
     * result hash, which defends against poor quality hash functions.  This is
     * critical because HashMap uses power-of-two length hash tables, that
     * otherwise encounter collisions for hashCodes that do not differ
     * in lower bits.
     */
    //计算k的hash
    final int hash(Object k) {
        int h = k.hashCode();

        // This function ensures that hashCodes that differ only by
        // constant multiples at each bit position have a bounded
        // number of collisions (approximately 8 at default load factor).
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }

    /**
     * Returns index for hash code h.
     */
    private static int indexFor(int h, int length) {
        return h & (length-1);
    }

    /**
     * Expunges stale entries from the table.
     */
    private void expungeStaleEntries() {
        for (Object x; (x = queue.poll()) != null; ) {
            synchronized (queue) {
                @SuppressWarnings("unchecked")
                Entry<K,V> e = (Entry<K,V>) x;
                int i = indexFor(e.hash, table.length);

                Entry<K,V> prev = table[i];
                Entry<K,V> p = prev;
                while (p != null) {
                    Entry<K,V> next = p.next;
                    if (p == e) {
                        if (prev == e)
                            table[i] = next;
                        else
                            prev.next = next;
                        // Must not null out e.next;
                        // stale entries may be in use by a HashIterator
                        e.value = null; // Help GC
                        size--;
                        break;
                    }
                    prev = p;
                    p = next;
                }
            }
        }
    }

    /**
     * Returns the table after first expunging stale entries.
     */
    private Entry<K,V>[] getTable() {
        expungeStaleEntries();
        return table;
    }

    /**
     * Returns the number of key-value mappings in this map.
     * This result is a snapshot, and may not reflect unprocessed
     * entries that will be removed before next attempted access
     * because they are no longer referenced.
     */
    //返回数目
    public int size() {
        if (size == 0)
            return 0;
        expungeStaleEntries();
        return size;
    }

    /**
     * Returns <tt>true</tt> if this map contains no key-value mappings.
     * This result is a snapshot, and may not reflect unprocessed
     * entries that will be removed before next attempted access
     * because they are no longer referenced.
     */
    //判断是否为空
    public boolean isEmpty() {
        return size() == 0;
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it&#39;s also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    //通过key获得value
    public V get(Object key) {
        Object k = maskNull(key);
        int h = hash(k);
        Entry<K,V>[] tab = getTable();
        int index = indexFor(h, tab.length);
        Entry<K,V> e = tab[index];
        while (e != null) {
            if (e.hash == h && eq(k, e.get()))
                return e.value;
            e = e.next;
        }
        return null;
    }

    /**
     * Returns <tt>true</tt> if this map contains a mapping for the
     * specified key.
     *
     * @param  key   The key whose presence in this map is to be tested
     * @return <tt>true</tt> if there is a mapping for <tt>key</tt>;
     *         <tt>false</tt> otherwise
     */
    //判断是否包含某个key
    public boolean containsKey(Object key) {
        return getEntry(key) != null;
    }

    /**
     * Returns the entry associated with the specified key in this map.
     * Returns null if the map contains no mapping for this key.
     */
    //通过key获得entry
    Entry<K,V> getEntry(Object key) {
        Object k = maskNull(key);
        int h = hash(k);
        Entry<K,V>[] tab = getTable();
        int index = indexFor(h, tab.length);
        Entry<K,V> e = tab[index];
        while (e != null && !(e.hash == h && eq(k, e.get())))
            e = e.next;
        return e;
    }

    /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for this key, the old
     * value is replaced.
     *
     * @param key key with which the specified value is to be associated.
     * @param value value to be associated with the specified key.
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    //插入key和value
    public V put(K key, V value) {
        Object k = maskNull(key);
        int h = hash(k);
        Entry<K,V>[] tab = getTable();
        int i = indexFor(h, tab.length);

        for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
            if (h == e.hash && eq(k, e.get())) {
                V oldValue = e.value;
                if (value != oldValue)
                    e.value = value;
                return oldValue;
            }
        }

        modCount++;
        Entry<K,V> e = tab[i];
        tab[i] = new Entry<>(k, value, queue, h, e);
        if (++size >= threshold)
            resize(tab.length * 2);
        return null;
    }

    /**
     * Rehashes the contents of this map into a new array with a
     * larger capacity.  This method is called automatically when the
     * number of keys in this map reaches its threshold.
     *
     * If current capacity is MAXIMUM_CAPACITY, this method does not
     * resize the map, but sets threshold to Integer.MAX_VALUE.
     * This has the effect of preventing future calls.
     *
     * @param newCapacity the new capacity, MUST be a power of two;
     *        must be greater than current capacity unless current
     *        capacity is MAXIMUM_CAPACITY (in which case value
     *        is irrelevant).
     */
    //跳转大小
    void resize(int newCapacity) {
        Entry<K,V>[] oldTable = getTable();
        int oldCapacity = oldTable.length;
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }

        Entry<K,V>[] newTable = newTable(newCapacity);
        transfer(oldTable, newTable);
        table = newTable;

        /*
         * If ignoring null elements and processing ref queue caused massive
         * shrinkage, then restore old table.  This should be rare, but avoids
         * unbounded expansion of garbage-filled tables.
         */
        if (size >= threshold / 2) {
            threshold = (int)(newCapacity * loadFactor);
        } else {
            expungeStaleEntries();
            transfer(newTable, oldTable);
            table = oldTable;
        }
    }

    /** Transfers all entries from src to dest tables */
    private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
        for (int j = 0; j < src.length; ++j) {
            Entry<K,V> e = src[j];
            src[j] = null;
            while (e != null) {
                Entry<K,V> next = e.next;
                Object key = e.get();
                if (key == null) {
                    e.next = null;  // Help GC
                    e.value = null; //  "   "
                    size--;
                } else {
                    int i = indexFor(e.hash, dest.length);
                    e.next = dest[i];
                    dest[i] = e;
                }
                e = next;
            }
        }
    }

    /**
     * Copies all of the mappings from the specified map to this map.
     * These mappings will replace any mappings that this map had for any
     * of the keys currently in the specified map.
     *
     * @param m mappings to be stored in this map.
     * @throws  NullPointerException if the specified map is null.
     */
    public void putAll(Map<? extends K, ? extends V> m) {
        int numKeysToBeAdded = m.size();
        if (numKeysToBeAdded == 0)
            return;

        /*
         * Expand the map if the map if the number of mappings to be added
         * is greater than or equal to threshold.  This is conservative; the
         * obvious condition is (m.size() + size) >= threshold, but this
         * condition could result in a map with twice the appropriate capacity,
         * if the keys to be added overlap with the keys already in this map.
         * By using the conservative calculation, we subject ourself
         * to at most one extra resize.
         */
        if (numKeysToBeAdded > threshold) {
            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
            if (targetCapacity > MAXIMUM_CAPACITY)
                targetCapacity = MAXIMUM_CAPACITY;
            int newCapacity = table.length;
            while (newCapacity < targetCapacity)
                newCapacity <<= 1;
            if (newCapacity > table.length)
                resize(newCapacity);
        }

        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
            put(e.getKey(), e.getValue());
    }

    /**
     * Removes the mapping for a key from this weak hash map if it is present.
     * More formally, if this map contains a mapping from key <tt>k</tt> to
     * value <tt>v</tt> such that <code>(key==null ?  k==null :
     * key.equals(k))</code>, that mapping is removed.  (The map can contain
     * at most one such mapping.)
     *
     * <p>Returns the value to which this map previously associated the key,
     * or <tt>null</tt> if the map contained no mapping for the key.  A
     * return value of <tt>null</tt> does not <i>necessarily</i> indicate
     * that the map contained no mapping for the key; it&#39;s also possible
     * that the map explicitly mapped the key to <tt>null</tt>.
     *
     * <p>The map will not contain a mapping for the specified key once the
     * call returns.
     *
     * @param key key whose mapping is to be removed from the map
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
     */
    //根据key删除
    public V remove(Object key) {
        Object k = maskNull(key);
        int h = hash(k);
        Entry<K,V>[] tab = getTable();
        int i = indexFor(h, tab.length);
        Entry<K,V> prev = tab[i];
        Entry<K,V> e = prev;

        while (e != null) {
            Entry<K,V> next = e.next;
            if (h == e.hash && eq(k, e.get())) {
                modCount++;
                size--;
                if (prev == e)
                    tab[i] = next;
                else
                    prev.next = next;
                return e.value;
            }
            prev = e;
            e = next;
        }

        return null;
    }

    /** Special version of remove needed by Entry set */
    boolean removeMapping(Object o) {
        if (!(o instanceof Map.Entry))
            return false;
        Entry<K,V>[] tab = getTable();
        Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
        Object k = maskNull(entry.getKey());
        int h = hash(k);
        int i = indexFor(h, tab.length);
        Entry<K,V> prev = tab[i];
        Entry<K,V> e = prev;

        while (e != null) {
            Entry<K,V> next = e.next;
            if (h == e.hash && e.equals(entry)) {
                modCount++;
                size--;
                if (prev == e)
                    tab[i] = next;
                else
                    prev.next = next;
                return true;
            }
            prev = e;
            e = next;
        }

        return false;
    }

    /**
     * Removes all of the mappings from this map.
     * The map will be empty after this call returns.
     */
    //清空
    public void clear() {
        // clear out ref queue. We don&#39;t need to expunge entries
        // since table is getting cleared.
        while (queue.poll() != null)
            ;

        modCount++;
        Arrays.fill(table, null);
        size = 0;

        // Allocation of array may have caused GC, which may have caused
        // additional entries to go stale.  Removing these entries from the
        // reference queue will make them eligible for reclamation.
        while (queue.poll() != null)
            ;
    }

    /**
     * Returns <tt>true</tt> if this map maps one or more keys to the
     * specified value.
     *
     * @param value value whose presence in this map is to be tested
     * @return <tt>true</tt> if this map maps one or more keys to the
     *         specified value
     */
    //判断是否包含某个值
    public boolean containsValue(Object value) {
        if (value==null)
            return containsNullValue();

        Entry<K,V>[] tab = getTable();
        for (int i = tab.length; i-- > 0;)
            for (Entry<K,V> e = tab[i]; e != null; e = e.next)
                if (value.equals(e.value))
                    return true;
        return false;
    }

    /**
     * Special-case code for containsValue with null argument
     */
    //判断是否有空值
    private boolean containsNullValue() {
        Entry<K,V>[] tab = getTable();
        for (int i = tab.length; i-- > 0;)
            for (Entry<K,V> e = tab[i]; e != null; e = e.next)
                if (e.value==null)
                    return true;
        return false;
    }

    /**
     * The entries in this hash table extend WeakReference, using its main ref
     * field as the key.
     */
    //entry继承了虚引用
    private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
        V value;
        final int hash;
        Entry<K,V> next;

        /**
         * Creates new entry.
         */
        Entry(Object key, V value,
              ReferenceQueue<Object> queue,
              int hash, Entry<K,V> next) {
            super(key, queue);
            this.value = value;
            this.hash  = hash;
            this.next  = next;
        }

        @SuppressWarnings("unchecked")
        public K getKey() {
            return (K) WeakHashMap.unmaskNull(get());
        }

        public V getValue() {
            return value;
        }

        public V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            K k1 = getKey();
            Object k2 = e.getKey();
            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                V v1 = getValue();
                Object v2 = e.getValue();
                if (v1 == v2 || (v1 != null && v1.equals(v2)))
                    return true;
            }
            return false;
        }

        public int hashCode() {
            K k = getKey();
            V v = getValue();
            return Objects.hashCode(k) ^ Objects.hashCode(v);
        }

        public String toString() {
            return getKey() + "=" + getValue();
        }
    }

    private abstract class HashIterator<T> implements Iterator<T> {
        private int index;
        private Entry<K,V> entry;
        private Entry<K,V> lastReturned;
        private int expectedModCount = modCount;

        /**
         * Strong reference needed to avoid disappearance of key
         * between hasNext and next
         */
        private Object nextKey;

        /**
         * Strong reference needed to avoid disappearance of key
         * between nextEntry() and any use of the entry
         */
        private Object currentKey;

        HashIterator() {
            index = isEmpty() ? 0 : table.length;
        }

        public boolean hasNext() {
            Entry<K,V>[] t = table;

            while (nextKey == null) {
                Entry<K,V> e = entry;
                int i = index;
                while (e == null && i > 0)
                    e = t[--i];
                entry = e;
                index = i;
                if (e == null) {
                    currentKey = null;
                    return false;
                }
                nextKey = e.get(); // hold on to key in strong ref
                if (nextKey == null)
                    entry = entry.next;
            }
            return true;
        }

        /** The common parts of next() across different types of iterators */
        protected Entry<K,V> nextEntry() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (nextKey == null && !hasNext())
                throw new NoSuchElementException();

            lastReturned = entry;
            entry = entry.next;
            currentKey = nextKey;
            nextKey = null;
            return lastReturned;
        }

        public void remove() {
            if (lastReturned == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();

            WeakHashMap.this.remove(currentKey);
            expectedModCount = modCount;
            lastReturned = null;
            currentKey = null;
        }

    }

    private class ValueIterator extends HashIterator<V> {
        public V next() {
            return nextEntry().value;
        }
    }

    private class KeyIterator extends HashIterator<K> {
        public K next() {
            return nextEntry().getKey();
        }
    }

    private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
        public Map.Entry<K,V> next() {
            return nextEntry();
        }
    }

// Views

    private transient Set<Map.Entry<K,V>> entrySet;

    /**
     * Returns a {@link Set} view of the keys contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator&#39;s own <tt>remove</tt> operation), the results of
     * the iteration are undefined.  The set supports element removal,
     * which removes the corresponding mapping from the map, via the
     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
     * operations.
     */
    public Set<K> keySet() {
        Set<K> ks = keySet;
        return (ks != null ? ks : (keySet = new KeySet()));
    }

    private class KeySet extends AbstractSet<K> {
        public Iterator<K> iterator() {
            return new KeyIterator();
        }

        public int size() {
            return WeakHashMap.this.size();
        }

        public boolean contains(Object o) {
            return containsKey(o);
        }

        public boolean remove(Object o) {
            if (containsKey(o)) {
                WeakHashMap.this.remove(o);
                return true;
            }
            else
                return false;
        }

        public void clear() {
            WeakHashMap.this.clear();
        }

        public Spliterator<K> spliterator() {
            return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
        }
    }

    /**
     * Returns a {@link Collection} view of the values contained in this map.
     * The collection is backed by the map, so changes to the map are
     * reflected in the collection, and vice-versa.  If the map is
     * modified while an iteration over the collection is in progress
     * (except through the iterator&#39;s own <tt>remove</tt> operation),
     * the results of the iteration are undefined.  The collection
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
     * support the <tt>add</tt> or <tt>addAll</tt> operations.
     */
    public Collection<V> values() {
        Collection<V> vs = values;
        return (vs != null) ? vs : (values = new Values());
    }

    private class Values extends AbstractCollection<V> {
        public Iterator<V> iterator() {
            return new ValueIterator();
        }

        public int size() {
            return WeakHashMap.this.size();
        }

        public boolean contains(Object o) {
            return containsValue(o);
        }

        public void clear() {
            WeakHashMap.this.clear();
        }

        public Spliterator<V> spliterator() {
            return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
        }
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator&#39;s own <tt>remove</tt> operation, or through the
     * <tt>setValue</tt> operation on a map entry returned by the
     * iterator) the results of the iteration are undefined.  The set
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
     * <tt>clear</tt> operations.  It does not support the
     * <tt>add</tt> or <tt>addAll</tt> operations.
     */
    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es = entrySet;
        return es != null ? es : (entrySet = new EntrySet());
    }

    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator();
        }

        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            Entry<K,V> candidate = getEntry(e.getKey());
            return candidate != null && candidate.equals(e);
        }

        public boolean remove(Object o) {
            return removeMapping(o);
        }

        public int size() {
            return WeakHashMap.this.size();
        }

        public void clear() {
            WeakHashMap.this.clear();
        }

        private List<Map.Entry<K,V>> deepCopy() {
            List<Map.Entry<K,V>> list = new ArrayList<>(size());
            for (Map.Entry<K,V> e : this)
                list.add(new AbstractMap.SimpleEntry<>(e));
            return list;
        }

        public Object[] toArray() {
            return deepCopy().toArray();
        }

        public <T> T[] toArray(T[] a) {
            return deepCopy().toArray(a);
        }

        public Spliterator<Map.Entry<K,V>> spliterator() {
            return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
        }
    }

    @SuppressWarnings("unchecked")
    @Override
    public void forEach(BiConsumer<? super K, ? super V> action) {
        Objects.requireNonNull(action);
        int expectedModCount = modCount;

        Entry<K, V>[] tab = getTable();
        for (Entry<K, V> entry : tab) {
            while (entry != null) {
                Object key = entry.get();
                if (key != null) {
                    action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
                }
                entry = entry.next;

                if (expectedModCount != modCount) {
                    throw new ConcurrentModificationException();
                }
            }
        }
    }

    @SuppressWarnings("unchecked")
    @Override
    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        Objects.requireNonNull(function);
        int expectedModCount = modCount;

        Entry<K, V>[] tab = getTable();;
        for (Entry<K, V> entry : tab) {
            while (entry != null) {
                Object key = entry.get();
                if (key != null) {
                    entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
                }
                entry = entry.next;

                if (expectedModCount != modCount) {
                    throw new ConcurrentModificationException();
                }
            }
        }
    }

    /**
     * Similar form as other hash Spliterators, but skips dead
     * elements.
     */
    static class WeakHashMapSpliterator<K,V> {
        final WeakHashMap<K,V> map;
        WeakHashMap.Entry<K,V> current; // current node
        int index;             // current index, modified on advance/split
        int fence;             // -1 until first use; then one past last index
        int est;               // size estimate
        int expectedModCount;  // for comodification checks

        WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
                               int fence, int est,
                               int expectedModCount) {
            this.map = m;
            this.index = origin;
            this.fence = fence;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getFence() { // initialize fence and size on first use
            int hi;
            if ((hi = fence) < 0) {
                WeakHashMap<K,V> m = map;
                est = m.size();
                expectedModCount = m.modCount;
                hi = fence = m.table.length;
            }
            return hi;
        }

        public final long estimateSize() {
            getFence(); // force init
            return (long) est;
        }
    }

    static final class KeySpliterator<K,V>
            extends WeakHashMapSpliterator<K,V>
            implements Spliterator<K> {
        KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
                       int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public KeySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid) ? null :
                    new KeySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
                            expectedModCount);
        }

        public void forEachRemaining(Consumer<? super K> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            WeakHashMap<K,V> m = map;
            WeakHashMap.Entry<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = tab.length;
            }
            else
                mc = expectedModCount;
            if (tab.length >= hi && (i = index) >= 0 &&
                    (i < (index = hi) || current != null)) {
                WeakHashMap.Entry<K,V> p = current;
                current = null; // exhaust
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        Object x = p.get();
                        p = p.next;
                        if (x != null) {
                            @SuppressWarnings("unchecked") K k =
                                    (K) WeakHashMap.unmaskNull(x);
                            action.accept(k);
                        }
                    }
                } while (p != null || i < hi);
            }
            if (m.modCount != mc)
                throw new ConcurrentModificationException();
        }

        public boolean tryAdvance(Consumer<? super K> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            WeakHashMap.Entry<K,V>[] tab = map.table;
            if (tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        Object x = current.get();
                        current = current.next;
                        if (x != null) {
                            @SuppressWarnings("unchecked") K k =
                                    (K) WeakHashMap.unmaskNull(x);
                            action.accept(k);
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return Spliterator.DISTINCT;
        }
    }

    static final class ValueSpliterator<K,V>
            extends WeakHashMapSpliterator<K,V>
            implements Spliterator<V> {
        ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public ValueSpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid) ? null :
                    new ValueSpliterator<K,V>(map, lo, index = mid, est >>>= 1,
                            expectedModCount);
        }

        public void forEachRemaining(Consumer<? super V> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            WeakHashMap<K,V> m = map;
            WeakHashMap.Entry<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = tab.length;
            }
            else
                mc = expectedModCount;
            if (tab.length >= hi && (i = index) >= 0 &&
                    (i < (index = hi) || current != null)) {
                WeakHashMap.Entry<K,V> p = current;
                current = null; // exhaust
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        Object x = p.get();
                        V v = p.value;
                        p = p.next;
                        if (x != null)
                            action.accept(v);
                    }
                } while (p != null || i < hi);
            }
            if (m.modCount != mc)
                throw new ConcurrentModificationException();
        }

        public boolean tryAdvance(Consumer<? super V> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            WeakHashMap.Entry<K,V>[] tab = map.table;
            if (tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        Object x = current.get();
                        V v = current.value;
                        current = current.next;
                        if (x != null) {
                            action.accept(v);
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return 0;
        }
    }

    static final class EntrySpliterator<K,V>
            extends WeakHashMapSpliterator<K,V>
            implements Spliterator<Map.Entry<K,V>> {
        EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public EntrySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid) ? null :
                    new EntrySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
                            expectedModCount);
        }


        public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            WeakHashMap<K,V> m = map;
            WeakHashMap.Entry<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = tab.length;
            }
            else
                mc = expectedModCount;
            if (tab.length >= hi && (i = index) >= 0 &&
                    (i < (index = hi) || current != null)) {
                WeakHashMap.Entry<K,V> p = current;
                current = null; // exhaust
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        Object x = p.get();
                        V v = p.value;
                        p = p.next;
                        if (x != null) {
                            @SuppressWarnings("unchecked") K k =
                                    (K) WeakHashMap.unmaskNull(x);
                            action.accept
                                    (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
                        }
                    }
                } while (p != null || i < hi);
            }
            if (m.modCount != mc)
                throw new ConcurrentModificationException();
        }

        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            WeakHashMap.Entry<K,V>[] tab = map.table;
            if (tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        Object x = current.get();
                        V v = current.value;
                        current = current.next;
                        if (x != null) {
                            @SuppressWarnings("unchecked") K k =
                                    (K) WeakHashMap.unmaskNull(x);
                            action.accept
                                    (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
            }
            return false;
        }
        public int characteristics() {
            return Spliterator.DISTINCT;
        }
    }

}

以上是Java集合之WeakHashMap詳解的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn