首頁 >後端開發 >Python教學 >如何用Python實作八大排序演算法

如何用Python實作八大排序演算法

高洛峰
高洛峰原創
2017-03-11 10:10:031282瀏覽

這篇文章主要介紹了八大排序演算法的Python實現,對八大排序演算法進行詳細描述和程式碼實現,有興趣的小夥伴們可以參考一下

Python實現八大排序演算法,具體內容如下

1、插入排序
描述

插入排序的基本操作就是將一個資料插入到已經排好序的有序資料中,從而得到一個新的、個數加一的有序數據,演算法適用於少量數據的排序,時間複雜度為O(n^2)。是穩定的排序方法。插入演算法將要排序的陣列分成兩部分:第一部分包含了這個陣列的所有元素,但將最後一個元素除外(讓陣列多一個空間才有插入的位置),而第二部分只包含這一個元素(即待插入元素)。在第一部分排序完成後,再將這個最後元素插入到已排好序的第一部分。

程式碼實作

def insert_sort(lists):
  # 插入排序
  count = len(lists)
  for i in range(1, count):
    key = lists[i]
    j = i - 1
    while j >= 0:
      if lists[j] > key:
        lists[j + 1] = lists[j]
        lists[j] = key
      j -= 1
  return lists

#2、希爾排序
描述

#希爾排序(Shell Sort)是插入排序的一種。也稱縮小增量排序,是直接插入排序演算法的一種更有效率的改進版本。希爾排序是非穩定排序演算法。此方法因DL. Shell於1959年提出而得名。 希爾排序是把記錄按標的一定增量分組,對每組使用直接插入排序演算法排序;隨著增量逐漸減少,每組包含的關鍵字越來越多,當增量減至1時,整份文件恰被分成一組,演算法便終止。

程式碼實作

def shell_sort(lists):
  # 希尔排序
  count = len(lists)
  step = 2
  group = count / step
  while group > 0:
    for i in range(0, group):
      j = i + group
      while j < count:
        k = j - group
        key = lists[j]
        while k >= 0:
          if lists[k] > key:
            lists[k + group] = lists[k]
            lists[k] = key
          k -= group
        j += group
    group /= step
  return lists

#3、冒泡排序
描述

它重複地走訪要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重複地進行直到沒有再需要交換,也就是說該數列已經排序完成。

程式碼實作

def bubble_sort(lists):
  # 冒泡排序
  count = len(lists)
  for i in range(0, count):
    for j in range(i + 1, count):
      if lists[i] > lists[j]:
        lists[i], lists[j] = lists[j], lists[i]
  return lists

#4、快速排序
描述

#透過一趟排序將要排序的資料分割成獨立的兩部分,其中一部分的所有資料都比另外一部分的所有資料都要小,然後再按此方法對這兩部分資料分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個資料變成有序序列。

程式碼實作

def quick_sort(lists, left, right):
  # 快速排序
  if left >= right:
    return lists
  key = lists[left]
  low = left
  high = right
  while left < right:
    while left < right and lists[right] >= key:
      right -= 1
    lists[left] = lists[right]
    while left < right and lists[left] <= key:
      left += 1
    lists[right] = lists[left]
  lists[right] = key
  quick_sort(lists, low, left - 1)
  quick_sort(lists, left + 1, high)
  return lists

#5、直接選擇排序
描述

#基本思想:第1趟,在待排序記錄r1 ~ r[n]中選出最小的記錄,將它與r1交換;第2趟,在待排序記錄r2 ~ r[n]中選出最小的記錄,將它與r2交換;以此類推,第i趟在待排序記錄r[i] ~ r[n]中選出最小的記錄,將它與r[i]交換,使有序序列不斷增長直到全部排序完畢。

程式碼實作

def select_sort(lists):
  # 选择排序
  count = len(lists)
  for i in range(0, count):
    min = i
    for j in range(i + 1, count):
      if lists[min] > lists[j]:
        min = j
    lists[min], lists[i] = lists[i], lists[min]
  return lists

#6、堆排序
描述

堆排序( Heapsort)是指利用堆積樹(堆)這種資料結構所設計的一種排序演算法,它是選擇排序的一種。可以利用陣列的特性快速定位指定索引的元素。堆分為大根堆和小根堆,是完全二元樹。大根堆的要求是每個節點的值都不大於其父節點的值,即A[PARENT[i]] >= A[i]。在陣列的非降序排序中,需要使用的就是大根堆,因為根據大根堆的要求可知,最大的值一定在堆頂。

程式碼實作

# 调整堆
def adjust_heap(lists, i, size):
  lchild = 2 * i + 1
  rchild = 2 * i + 2
  max = i
  if i < size / 2:
    if lchild < size and lists[lchild] > lists[max]:
      max = lchild
    if rchild < size and lists[rchild] > lists[max]:
      max = rchild
    if max != i:
      lists[max], lists[i] = lists[i], lists[max]
      adjust_heap(lists, max, size)

# 创建堆
def build_heap(lists, size):
  for i in range(0, (size/2))[::-1]:
    adjust_heap(lists, i, size)

# 堆排序
def heap_sort(lists):
  size = len(lists)
  build_heap(lists, size)
  for i in range(0, size)[::-1]:
    lists[0], lists[i] = lists[i], lists[0]
    adjust_heap(lists, 0, i)

#7、歸併排序
描述

#歸併排序是建立在歸併操作上的一種有效的排序演算法,該演算法是採用分治法(pide and Conquer)的一個非常典型的應用。將已有序的子序列合併,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合併成一個有序表,稱為二路歸併。

歸併過程為:比較a[i]和a[j]的大小,若a[i]≤a[j],則將第一個有序表中的元素a[i]複製到r[k]中,並令i和k分別加上1;否則將第二個有序表中的元素a[j]複製到r[k]中,並令j和k分別加上1,如此循環下去,直到其中一個有序表取完,然後再將另一個有序表中剩餘的元素複製到r中從下標k到下標t的單元。歸併排序的演算法我們通常用遞歸實現,先把待排序區間[s,t]以中點二分,接著把左邊子區間排序,再把右邊子區間排序,最後把左區間和右區間用一次歸併操作合併成有序的區間[s,t]。

程式碼實作

def merge(left, right):
  i, j = 0, 0
  result = []
  while i < len(left) and j < len(right):
    if left[i] <= right[j]:
      result.append(left[i])
      i += 1
    else:
      result.append(right[j])
      j += 1
  result += left[i:]
  result += right[j:]
  return result

def merge_sort(lists):
  # 归并排序
  if len(lists) <= 1:
    return lists
  num = len(lists) / 2
  left = merge_sort(lists[:num])
  right = merge_sort(lists[num:])
  return merge(left, right)

#8、基數排序
描述

基數排序( radix sort)屬於「分配式排序」(distribution sort),又稱「桶法」(bucket sort)或bin sort,顧名思義,它是透過鍵值的部份資訊,將要排序的元素分配到某些「桶」中,藉以達到排序的作用,基數排序法是屬於穩定性的排序,其時間複雜度為O (nlog(r)m),其中r為所採取的基數,而m為堆數,在某些時候,基數排序法的效率高於其它的穩定性排序法。

程式碼實作

import math
def radix_sort(lists, radix=10):
  k = int(math.ceil(math.log(max(lists), radix)))
  bucket = [[] for i in range(radix)]
  for i in range(1, k+1):
    for j in lists:
      bucket[j/(radix**(i-1)) % (radix**i)].append(j)
    del lists[:]
    for z in bucket:
      lists += z
      del z[:]
  return lists

以上就是Python实现八大排序算法的详细介绍,希望对大家的学习有所帮助。

以上是如何用Python實作八大排序演算法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn