搜尋
首頁後端開發C#.Net教程C#你可能不知道的陷阱, IEnumerable介面的範例程式碼詳解

C#你可能不知道的陷阱, IEnumerable介面的範例程式碼詳解:

IEnumerable枚舉器介面的重要性,說一萬句話都不過分。幾乎所有集合都實現了這個接口,Linq的核心也依賴這個萬能的接口。 C語言的for迴圈寫得心煩,foreach就順暢了很多。

我很喜歡這個接口,但在使用上也遇到不少的疑問,你是不是也有跟我一樣的困惑:

(1) IEnumerable 與  IEnumerator到底有什麼區別

(2) 列舉能否越界訪問,越界訪問是什麼後果?為什麼在枚舉中不能改變集合的值?

(3) Linq的具體實作到底是怎樣的,例如Skip,它跳過了一些元素,那麼這些元素被訪問到了麼?

(4) IEnumerable 的本質是什麼?

(5) IEnumerable 枚舉中是否會形成閉包?多個枚舉過程會不會互相干擾?能否在枚舉中動態改變枚舉的元素?

….

如果有興趣,我們接著下面的內容。

開始之前,我們的文章規定,枚舉就是IEnumerable,迭代就是IEnumerator,已經被實例化(例如ToList())就是集合。

1.  IEnumerable 與  IEnumerator

IEnumerable只有一個抽象方法:GetEnumerator(),而IEnumerator又是一個迭代器,真正實現了存取集合的功能。  IEnumerator只有一個Current屬性,MoveNext和Reset兩個方法。

有個小問題,只搞一個訪問器介面不就得了?為什麼要兩個看起來很容易混淆的介面呢?一個叫枚舉器,一個叫迭代器。因為

(1) 實作IEnumerator是個髒活累活,白白加了兩個方法一個屬性,而且這兩個方法其實並不好實現(後面會提到)。

(2) 它需要維護初始狀態,知道如何MoveNext ,如何結束,同時返回迭代的上一個狀態,這些並不容易。

(3)迭代顯然是非執行緒安全的,每次IEnumerable都會產生新的IEnumerator,從而形成多個互相不影響的迭代過程。在迭代過程中,不能修改迭代集合,否則不安全。

所以只要實作了IEnumerable,編譯器就會幫我們實作IEnumerator。何況絕大多數情況都是從現有集合繼承,一般不需要重寫MoveNext和Reset方法。 IEnumerable當然還有泛型實現,這個不影響問題的討論。

IEnumerable讓我們想起了單向鍊錶,C中需要一個指針域保存下一個節點的信息,那麼在IEnumerable中,誰幫忙保存了這個信息?這個過程佔用記憶體麼? 是佔在程式區,還是堆區?

但是,IEnumerable也有它的缺點,它沒法後退,沒法跳躍(只能一個一個的跳​​過去),而且實現Reset並不容易,無法實現索引訪問。想想看, 如果是實例集合的枚舉過程,直接回到第0個元素就可以了,但是如果這個IEnumerable是漫長的訪問鏈條,想找到最初的根是很困難的!所 以CLR via C#的作者告訴你,其實很多Reset的實現根本就是謊言,知道有這個東西就行了,不要太過依賴它。

2. foreach和MoveNext有差別嗎

IEnumerable最大的特點是將存取的過程,交給了被訪客本身控制。在C語言中數組控制權是外在完全掌握的。這個介面卻在內部封裝存取了的過程,進一步提升了封裝性。例如下面:

public class People  //定义一个简单的实体类
    {
        public string Name { get; set; }
        public int Age { get; set; }
    }

    public class PersonList
    {
        private readonly List<People> peoples;

        public PersonList()  //为了方便,构造过程中插入元素
        {
            peoples = new List<People>();
            for (int i = 0; i < 5; i++)
            {
                peoples.Add(new People {Name = "P" + i, Age = 30 + i});
            }
        }

        public int OldAge = 31;
        public IEnumerable<People> OlderPeoples
        {
            get
            {
                foreach (People people in _people)
                {
                    if (people.Age > OldAge)
                        yield return people;
                }
                yield break;
            }
        }
    }

IEnumerable的本質是狀態​​機,它有點類似事件的概念,將實現丟到外面,實現程式碼間的穿越(想想星際效應),這是Linq的基礎。酷炫的迭代器,真的有我們想像的那麼簡單呢?

在C語言中,數組就是數組,實實在在的記憶體空間,那麼IEnumerable到底是什麼意思呢?如果它是由一個真正的集合(例如List)實現,那麼沒問題,也是實實在在的內存,可是如果是上述的例子呢?篩選返回的yield return 只返回了元素,但可能並不存在這個實際的集合,如果你將簡單的枚舉器的yield return 反編譯後看,會發現其實是一組switch-case, 編譯器在後台為我們做了大量的工作。

產生的新迭代器,如果不MoveNext,其實Current是空的,這是為什麼呢?為什麼一個迭代器不直接指向頭元素呢?

(感謝回答:就像C語言的單向鍊錶的頭指標一樣,這樣可以指定一個不包含任何元素的枚舉,程式設計起來更方便)

foreach每次往前移動一格,到頭了就停止。 等等,你確定它到頭了就會停止麼?我們來做個試驗:

public IEnumerable<People> Peoples1   //直接返回集合
        {
            get { return peoples; }
        }public IEnumerable<People> Peoples2  //包含yield break;
        {
            get
            {
                foreach (var people in peoples)
                {
                    yield return people;
                }
                yield break;  //其实这个用不用都可以
            }
        }

以上兩種,是我們常見的方式,注意第二種實現,ReSharper把yield break標成灰色(重複)。

我们再写下如下的测试代码,peopleList集合只有五个元素,但尝试去MoveNext 8次。可以把peopleList.Peoples1换成2,3,分别测试。

            var peopleList = new PeopleList();  //内部构造函数插入了五个元素
            IEnumerator<People> e1 = peopleList.Peoples1.GetEnumerator();
            if (e1.Current == null)
            {
                Console.WriteLine("迭代器生成后Current为空");
            }
            int i = 0;
            while (i<8)  //总共只有五个元素,看看一直迭代会发生什么效果
            {
                e1.MoveNext();
                if (e1.Current == null)
                {
                    Console.WriteLine("迭代第{0}次后为空",i);
                }
                else
                {
                    Console.WriteLine("迭代第{0}次后为{1}",i,e1.Current.Name);
                }
                i++;
            }
//PeopleEnumerable1   (直接返回集合)
迭代器生成后Current为空
迭代第0次后为P0
迭代第1次后为P1
迭代第2次后为P2
迭代第3次后为P3
迭代第4次后为P4
迭代第5次后为空
迭代第6次后为空
迭代第7次后为空

//PeopleEnumerable2 (不加yield break)
迭代器生成后Current为空
迭代第0次后为P0
迭代第1次后为P1
迭代第2次后为P2
迭代第3次后为P3
迭代第4次后为P4
迭代第5次后为P4
迭代第6次后为P4
迭代第7次后为P4

//PeopleEnumerable2 (加上yield break)
迭代器生成后Current为空
迭代第0次后为P0
迭代第1次后为P1
迭代第2次后为P2
迭代第3次后为P3
迭代第4次后为P4
迭代第5次后为P4
迭代第6次后为P4
迭代第7次后为P4

越界枚举测试结果

真让人吃惊,返回原始集合,越界之后就返回null了,但如果是MoveNext,不论有没有加yield break, 越界迭代后还是返回最后一个元素! 也许就是我们在第1节里提到的,迭代器只返回上一次的状态,因为无法后移,所以就重复返回,那为什么List集合就不会这样呢?问题留给大家。

(感谢回答:越界枚举到底是null还是最后一个元素的问题,其实没有明确规定,具体看.NET的实现,在.NET Framework中,越界后依然是最后一个元素)。

不过各位看官尽管放心,在foreach的标准枚举过程下,枚举是肯定能枚举完的,这就说明了MoveNext和foreach两种在实现上的不同,显然foreach更安全。同时还注意,不能在yield过程中实现try-catch代码块,为什么呢?因为yield模式组合了来自不同位置的代码和逻辑,怎么可能靠编译给每个引用的代码块加上try-catch?这太复杂了。

枚举的特性在处理大数据的时候很有帮助,就是因为它的状态性,一个超大的文件,我只要每次读一部分,就可以顺次的读取下去,直到文件结束,由于不需要实例化集合,内存占用是很低的。对数据库也是如此,每次读取一部分,就能应对很多难以应付的情况。

3.在枚举中修改枚举器参数?

在枚举过程中,集合是不能被修改的,比如在foreach循环中,如果插入或者删除一个元素,肯定会报运行时异常。有经验的程序员告诉 你,此时用for循环。for和foreach的本质区别是什么呢?

在MoveNext中,我突然改变了枚举的参数,使得它的数据量变多或者变少了,又会发生什么?

           Console.WriteLine("不修改OldAge参数");
            foreach (var olderPeople in peopleList.OlderPeoples)
            {
                Console.WriteLine(olderPeople);

            }

            Console.WriteLine("修改了OldAge参数");
            i = 0;
            foreach (var olderPeople in peopleList.OlderPeoples)
            {
                Console.WriteLine(olderPeople);
                i++;
                if (i ==1)
                    peopleList.OldAge = 33;  //只枚举一次后,修改OldAge 的值
            }

测试结果是:

不修改OldAge参数
ID:2,NameP2,Age32
ID:3,NameP3,Age33
ID:4,NameP4,Age34

修改了OldAge参数
ID:2,NameP2,Age32
ID:4,NameP4,Age34

可以看到,在枚举过程中修改了控制枚举的值,能动态改变枚举的行为。上面是在一个yield结构中改变变量的情况,我们再试试在迭代器和Lambda表达式的情况(代码略), 得到结果是:

在迭代中修改变量值
ID:2,NameP2,Age32
ID:4,NameP4,Age34
在Lambda表达式中修改变量值
ID:2,NameP2,Age32
ID:4,NameP4,Age34

可以看出,外部修改变量能够控制内部的迭代过程,动态改变了“集合的元素”。 这是一个好事,因为它的行为确实是对的;也是坏事:在迭代过程中,修改了变量的值,上下文语境变化,可是如果还按之前的语境进行处理,显然就会酿成大错。 这里和闭包没关系。

因此,如果一个枚举需要在上下文会发生变化的情况下保持原有的行为,就需要手动保存变量的副本。

如果你把两个集合A,B用Concat函数顺次拼接起来,也就是A-B, 而且不实例化,那么在枚举A的阶段中,修改集合B的元素,会报错么? 为什么?

比如如下的测试代码:

       List<People> peoples=new List<People>(){new People(){Name = "PA"}};
            Console.WriteLine("将一个虚拟枚举A连接到集合B,并在枚举A阶段修改集合B的元素");
            var e8 = peopleList.PeopleEnumerable1.Concat(peoples);
            i = 0;
            foreach (var people in e8)
            {
                Console.WriteLine(people);
                i++;
                if (i == 1)   
                  peoples.Add(new People(){Name = "PB"});  //此时还在枚举PeopleEnumerable1阶段
        }

如果你想知道,可以自己做个试验(在我附件里也有这个例子)。留给大家讨论。

4. 更多LINQ的讨论

你可以在yield中插入任何代码,这就是延迟(Lazy)的表现,只是需要执行的时候才执行。 我们不难想象Linq很多函数的实现方式,比较有意思的包括Concat,它将两个集合连在了一起,就像下面这样:

public static IEnumerable<T> Concat<T>(this IEnumerable<T> source, IEnumerable<T> source2)
       {
           foreach (var r in source)
           {
               yield return r;
           }
           foreach (var r in source2)
           {
               yield return r;
           }
       }

还有Select, Where都好实现,就不讨论了。

Skip怎么实现的呢?  它跳过了集合中的一部分元素,我猜是这样的:

public static IEnumerable<T> Skip<T>(this IEnumerable<T> source, int count)
       {
           int t = 0;
           foreach (var r in source)
           {
               t++;
               if(t<=count)
                   continue;
               yield return r;
           }
       }

那么,被跳过的元素,到底被访问过没有?它的代码被执行了么?

 Console.WriteLine("Skip的元素是否会被访问到?");
 IEnumerable<People> e6 = peopleList.PeopleEnumerable1.Select(d =>
       {
              Console.WriteLine(d);
              return d;
       }).Skip(3);
 Console.WriteLine("只枚举,什么都不做:");
 foreach (var  r in e6){}  
 Console.WriteLine("转换为实体集合,再次枚举");
 IEnumerable<People> e7 = e6.ToList();
 foreach (var r in e7){}

测试结果如下:

只枚举,什么都不做:
ID:0,NameP0,Age30
ID:1,NameP1,Age31
ID:2,NameP2,Age32
ID:3,NameP3,Age33
ID:4,NameP4,Age34
转换为实体集合,再次枚举
ID:0,NameP0,Age30
ID:1,NameP1,Age31
ID:2,NameP2,Age32
ID:3,NameP3,Age33
ID:4,NameP4,Age34

可以看出,Skip虽然是跳过,但还是会“访问”元素的,因此会执行额外的操作,比如lambda表达式,这不论是枚举器还是实体集合都是如此。这个角度说,要优化表达式,应当尽可能在linq中早的Skip和Take,以减少额外的副作用。

但对于Linq to SQL的实现中,显然Skip是做过额外优化的。我们是否也能优化Skip的实现,使得上层尽可能提升海量数据下的Skip性能呢?

5. 有关IEnumerable枚举的更多问题

(1) 枚举过程如何暂停?有暂停这一说么? 如何取消?

(2) PLinq的实现原理是什么?它改变的到底是IEnumerable接口的哪种特性?是否产生了乱序枚举?这种乱序枚举到底是怎么实现?

(3) IEnumerable实现了链条结构,这是Linq的基础,但这个链条的本质是什么?

(4) 因為IEnumerable代表了狀態和延遲,因此不難理解許多非同步操作的本質就是IEnumerable。我有一次面試時候,問到了異步的實質,你說異步的實質是什麼?異步不是多線程!非同步的精彩,本質上是程式碼的重新組合,因為長時間的非同步操作就是狀態機。 。 。比如CCR庫。這裡不準備展開說,因為暫時超過了作者的知識儲備,下次再說。

(5) 如果用C語言來實現同樣的枚舉器,同樣酷炫的Linq,不靠編譯器能實現麼?先不提Lambda的梗,我們用函數指標。

(6) IEnumerable寫入MapReduce? Linq for MapReduce?

#(7) IEnumerable如何Sort? 實例化為一個集合再排序麼?如果是一個超大的虛擬集合,如何最佳化?

以上是C#你可能不知道的陷阱, IEnumerable介面的範例程式碼詳解的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
如何使用C#编写时间序列预测算法如何使用C#编写时间序列预测算法Sep 19, 2023 pm 02:33 PM

如何使用C#编写时间序列预测算法时间序列预测是一种通过分析过去的数据来预测未来数据趋势的方法。它在很多领域,如金融、销售和天气预报中有广泛的应用。在本文中,我们将介绍如何使用C#编写时间序列预测算法,并附上具体的代码示例。数据准备在进行时间序列预测之前,首先需要准备好数据。一般来说,时间序列数据应该具有足够的长度,并且是按照时间顺序排列的。你可以从数据库或者

如何使用Redis和C#开发分布式事务功能如何使用Redis和C#开发分布式事务功能Sep 21, 2023 pm 02:55 PM

如何使用Redis和C#开发分布式事务功能引言分布式系统的开发中,事务处理是一项非常重要的功能。事务处理能够保证在分布式系统中的一系列操作要么全部成功,要么全部回滚。Redis是一种高性能的键值存储数据库,而C#是一种广泛应用于开发分布式系统的编程语言。本文将介绍如何使用Redis和C#来实现分布式事务功能,并提供具体代码示例。I.Redis事务Redis

如何实现C#中的人脸识别算法如何实现C#中的人脸识别算法Sep 19, 2023 am 08:57 AM

如何实现C#中的人脸识别算法人脸识别算法是计算机视觉领域中的一个重要研究方向,它可以用于识别和验证人脸,广泛应用于安全监控、人脸支付、人脸解锁等领域。在本文中,我们将介绍如何使用C#来实现人脸识别算法,并提供具体的代码示例。实现人脸识别算法的第一步是获取图像数据。在C#中,我们可以使用EmguCV库(OpenCV的C#封装)来处理图像。首先,我们需要在项目

Redis在C#开发中的应用:如何实现高效的缓存更新Redis在C#开发中的应用:如何实现高效的缓存更新Jul 30, 2023 am 09:46 AM

Redis在C#开发中的应用:如何实现高效的缓存更新引言:在Web开发中,缓存是提高系统性能的常用手段之一。而Redis作为一款高性能的Key-Value存储系统,能够提供快速的缓存操作,为我们的应用带来了不少便利。本文将介绍如何在C#开发中使用Redis,实现高效的缓存更新。Redis的安装与配置在开始之前,我们需要先安装Redis并进行相应的配置。你可以

C#开发中如何处理跨域请求和安全性问题C#开发中如何处理跨域请求和安全性问题Oct 08, 2023 pm 09:21 PM

C#开发中如何处理跨域请求和安全性问题在现代的网络应用开发中,跨域请求和安全性问题是开发人员经常面临的挑战。为了提供更好的用户体验和功能,应用程序经常需要与其他域或服务器进行交互。然而,浏览器的同源策略导致了这些跨域请求被阻止,因此需要采取一些措施来处理跨域请求。同时,为了保证数据的安全性,开发人员还需要考虑一些安全性问题。本文将探讨C#开发中如何处理跨域请

如何使用C#编写动态规划算法如何使用C#编写动态规划算法Sep 20, 2023 pm 04:03 PM

如何使用C#编写动态规划算法摘要:动态规划是求解最优化问题的一种常用算法,适用于多种场景。本文将介绍如何使用C#编写动态规划算法,并提供具体的代码示例。一、什么是动态规划算法动态规划(DynamicProgramming,简称DP)是一种用来求解具有重叠子问题和最优子结构性质的问题的算法思想。动态规划将问题分解成若干个子问题来求解,通过记录每个子问题的解,

如何实现C#中的遗传算法如何实现C#中的遗传算法Sep 19, 2023 pm 01:07 PM

如何在C#中实现遗传算法引言:遗传算法是一种模拟自然选择和基因遗传机制的优化算法,其主要思想是通过模拟生物进化的过程来搜索最优解。在计算机科学领域,遗传算法被广泛应用于优化问题的解决,例如机器学习、参数优化、组合优化等。本文将介绍如何在C#中实现遗传算法,并提供具体的代码示例。一、遗传算法的基本原理遗传算法通过使用编码表示解空间中的候选解,并利用选择、交叉和

如何实现C#中的图像压缩算法如何实现C#中的图像压缩算法Sep 19, 2023 pm 02:12 PM

如何实现C#中的图像压缩算法摘要:图像压缩是图像处理领域中的一个重要研究方向,本文将介绍在C#中实现图像压缩的算法,并给出相应的代码示例。引言:随着数字图像的广泛应用,图像压缩成为了图像处理中的重要环节。压缩能够减小存储空间和传输带宽,并能提高图像处理的效率。在C#语言中,我们可以通过使用各种图像压缩算法来实现对图像的压缩。本文将介绍两种常见的图像压缩算法:

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具