heapq 模組提供了堆演算法。 heapq是一種子節點和父節點排序的樹狀資料結構。這個模組提供heap[k]
列印heapq 類型
import math import random from cStringIO import StringIO def show_tree(tree, total_width=36, fill=' '): output = StringIO() last_row = -1 for i, n in enumerate(tree): if i: row = int(math.floor(math.log(i+1, 2))) else: row = 0 if row != last_row: output.write('\n') columns = 2**row col_width = int(math.floor((total_width * 1.0) / columns)) output.write(str(n).center(col_width, fill)) last_row = row print output.getvalue() print '-' * total_width print return data = random.sample(range(1,8), 7) print 'data: ', data show_tree(data)
列印結果
data: [3, 2, 6, 5, 4, 7, 1] 3 2 6 5 4 7 1 ------------------------- heapq.heappush(heap, item)
push一個元素到heap裡, 修改上面的程式碼
heap = [] data = random.sample(range(1,8), 7) print 'data: ', data for i in data: print 'add %3d:' % i heapq.heappush(heap, i) show_tree(heap)
列印結果
data: [6, 1, 5, 4, 3, 7, 2] add 6: 6 ------------------------------------ add 1: 1 6 ------------------------------------ add 5: 1 6 5 ------------------------------------ add 4: 1 4 5 6 ------------------------------------ add 3: 1 3 5 6 4 ------------------------------------ add 7: 1 3 5 6 4 7 ------------------------------------ add 2: 1 3 2 6 4 7 5 ------------------------------------
根據結果可以了解,子節點的元素大於父節點元素。而兄弟節點則不會排序。
heapq.heapify(list)
將list類型轉換為heap, 在線性時間內, 重新排列清單。
print 'data: ', data heapq.heapify(data) print 'data: ', data show_tree(data)
列印結果
#data: [2, 7, 4, 3, 6, 5, 1] data: [1, 3, 2, 7, 6, 5, 4] 1 3 2 7 6 5 4 ------------------------------------ heapq.heappop(heap)
刪除並傳回堆中最小的元素, 通過heapify() 和heappop()來排序。
data = random.sample(range(1, 8), 7) print 'data: ', data heapq.heapify(data) show_tree(data) heap = [] while data: i = heapq.heappop(data) print 'pop %3d:' % i show_tree(data) heap.append(i) print 'heap: ', heap
列印結果
#data: [4, 1, 3, 7, 5, 6, 2] 1 4 2 7 5 6 3 ------------------------------------ pop 1: 2 4 3 7 5 6 ------------------------------------ pop 2: 3 4 6 7 5 ------------------------------------ pop 3: 4 5 6 7 ------------------------------------ pop 4: 5 7 6 ------------------------------------ pop 5: 6 7 ------------------------------------ pop 6: 7 ------------------------------------ pop 7: ------------------------------------ heap: [1, 2, 3, 4, 5, 6, 7]
可以看到已排好序的heap。
heapq.heapreplace(iterable, n)
#刪除現有元素並將其替換為新值。
data = random.sample(range(1, 8), 7) print 'data: ', data heapq.heapify(data) show_tree(data) for n in [8, 9, 10]: smallest = heapq.heapreplace(data, n) print 'replace %2d with %2d:' % (smallest, n) show_tree(data)
列印結果
#data: [7, 5, 4, 2, 6, 3, 1] 1 2 3 5 6 7 4 ------------------------------------ replace 1 with 8: 2 5 3 8 6 7 4 ------------------------------------ replace 2 with 9: 3 5 4 8 6 7 9 ------------------------------------ replace 3 with 10: 4 5 7 8 6 10 9 ------------------------------------
heapq.nlargest(n, iterable ) 和heapq.nsmallest(n, iterable)
傳回列表中的n個最大值和最小值
data = range(1,6) l = heapq.nlargest(3, data) print l # [5, 4, 3] s = heapq.nsmallest(3, data) print s # [1, 2, 3]
PS:一個計算題
建構元素個數為K=5 的最小堆程式碼實例:
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Author: kentzhan # import heapq import random heap = [] heapq.heapify(heap) for i in range(15): item = random.randint(10, 100) print "comeing ", item, if len(heap) >= 5: top_item = heap[0] # smallest in heap if top_item < item: # min heap top_item = heapq.heappop(heap) print "pop", top_item, heapq.heappush(heap, item) print "push", item, else: heapq.heappush(heap, item) print "push", item, pass print heap pass print heap print "sort" heap.sort() print heap
結果:
更多Python中heapq模組的用法相關文章請關注PHP中文網!

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。