首頁  >  文章  >  後端開發  >  python 排序演算法總結及實例

python 排序演算法總結及實例

高洛峰
高洛峰原創
2017-02-24 15:19:321696瀏覽

這篇文章主要介紹了python 排序演算法總結及實例詳解的相關資料,需要的朋友可以參考下

總結了一下常見集中排序的演算法

python 排序算法总结及实例

歸併排序

歸併排序也稱為合併排序,是分治法的典型應用。分治思想是將每個問題分解成個小問題,將每個小問題解決,然後合併。

具體的歸併排序就是,將一組無序數依n/2遞歸分解成只有一個元素的子項,一個元素就是已經排好序的了。然後將這些有序的子元素進行合併。

合併的過程就是對兩個已經排好序的子序列,先選取兩個子序列中最小的元素進行比較,選取兩個元素中最小的那個子序列並將其從子序列中

去掉加入到最終的結果集中,直到兩個子序列歸併完成。

程式碼如下:

#!/usr/bin/python 
import sys 
 
def merge(nums, first, middle, last): 
  ''''' merge ''' 
  # 切片边界,左闭右开并且是了0为开始 
  lnums = nums[first:middle+1] 
  rnums = nums[middle+1:last+1] 
  lnums.append(sys.maxint) 
  rnums.append(sys.maxint) 
  l = 0 
  r = 0 
  for i in range(first, last+1): 
    if lnums[l] < rnums[r]: 
      nums[i] = lnums[l] 
      l+=1 
    else: 
      nums[i] = rnums[r] 
      r+=1 
def merge_sort(nums, first, last): 
  &#39;&#39;&#39;&#39;&#39; merge sort
  merge_sort函数中传递的是下标,不是元素个数
  &#39;&#39;&#39; 
  if first < last: 
    middle = (first + last)/2 
    merge_sort(nums, first, middle) 
    merge_sort(nums, middle+1, last) 
    merge(nums, first, middle,last) 
 
if __name__ == &#39;__main__&#39;: 
  nums = [10,8,4,-1,2,6,7,3] 
  print &#39;nums is:&#39;, nums 
  merge_sort(nums, 0, 7) 
  print &#39;merge sort:&#39;, nums

穩定,時間複雜度O(nlog n)

#插入排序

程式碼如下:

#!/usr/bin/python 
importsys 
 
definsert_sort(a): 
  &#39;&#39;&#39;&#39;&#39; 插入排序
  有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,
  但要求插入后此数据序列仍然有序。刚开始 一个元素显然有序,然后插入一
  个元素到适当位置,然后再插入第三个元素,依次类推
  &#39;&#39;&#39; 
  a_len = len(a) 
  if a_len = 0 and a[j] > key: 
      a[j+1] = a[j] 
      j-=1 
    a[j+1] = key 
  return a 
 
if __name__ == &#39;__main__&#39;: 
  nums = [10,8,4,-1,2,6,7,3] 
  print &#39;nums is:&#39;, nums 
  insert_sort(nums) 
  print &#39;insert sort:&#39;, nums

#穩定,時間複雜度O(n^2)

交換兩個元素的值python中你可以這麼寫:a, b = b, a,其實這是因為賦值符號的左右兩邊都是元組

(這裡需要強調的是,在python中,元組其實是由逗號「,」來界定的,而不是括號)。

選擇排序

選擇排序(Selection sort)是一種簡單直覺的排序演算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到

排序序列的起始位置,然後,再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末端。以此類推,直到所

有元素均排序完畢。

import sys 
def select_sort(a): 
  &#39;&#39;&#39;&#39;&#39; 选择排序 
  每一趟从待排序的数据元素中选出最小(或最大)的一个元素,
  顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
  选择排序是不稳定的排序方法。
  &#39;&#39;&#39; 
  a_len=len(a) 
  for i in range(a_len):#在0-n-1上依次选择相应大小的元素 
    min_index = i#记录最小元素的下标 
    for j in range(i+1, a_len):#查找最小值 
      if(a[j]<a[min_index]): 
        min_index=j 
    if min_index != i:#找到最小元素进行交换 
      a[i],a[min_index] = a[min_index],a[i] 
 
if __name__ == &#39;__main__&#39;: 
  A = [10, -3, 5, 7, 1, 3, 7]  
  print &#39;Before sort:&#39;,A  
  select_sort(A)  
  print &#39;After sort:&#39;,A

不穩定,時間複雜度O(n^2)

Wol排序

#希爾排序,也稱遞減增量排序演算法,希爾排序為非穩定排序演算法。此方法又稱縮小增量排序,因DL. Shell於1959年提出而得名。

先取一個小於n的整數d1作為第一個增量,把檔案的全部記錄分成d1個群組。所有距離為d1的倍數的記錄放在同一個組別中。先在各組內排序;

然後,取第二個增量d2

import sys 
def shell_sort(a): 
  &#39;&#39;&#39;&#39;&#39; shell排序 
  &#39;&#39;&#39; 
  a_len=len(a) 
  gap=a_len/2#增量 
  while gap>0: 
    for i in range(a_len):#对同一个组进行选择排序 
      m=i 
      j=i+1 
      while j<a_len: 
        if a[j]<a[m]: 
          m=j 
        j+=gap#j增加gap 
      if m!=i: 
        a[m],a[i]=a[i],a[m] 
    gap/=2 
 
if __name__ == &#39;__main__&#39;: 
  A = [10, -3, 5, 7, 1, 3, 7]  
  print &#39;Before sort:&#39;,A  
  shell_sort(A)  
  print &#39;After sort:&#39;,A

不穩定,時間複雜度平均時間O(nlogn) 最差時間O(n^s)1

堆排序( Heap Sort )

「堆」的定義:在起始索引為0 的「堆」:

節點i 的右子節點在位置2 * i + 24) 節點i 的父節點在位置floor( (i – 1) / 2 )   : 註floor 表示「取整」操作

堆的特性:

每個節點的鍵值一定總是大於(或小於)它的父節點

「最大堆」:

「堆」的根節點保存的是鍵值最大的節點。即「堆」中每個節點的鍵值總是大於它的子節點。

上移,下移:

當某節點的鍵值大於它的父節點時,這時我們就要進行「上移」操作,也就是我們把該節點移到它的父節點的位置,而讓它的父節點到它的位置上,然後我們繼續判斷該節點,直到節點不再大於它的父節點為止才停止「上移」。

現在我們再來了解「下移」操作。當我們把某節點的鍵值改小了之後,我們就要對其進行「下移」操作。

方法:

我們先建立一個最大堆(時間複雜度O(n)),然後每次我們只需要把根節點與最後一個位置的節點交換,然後把最後一個位置排除之外,然後把交換後根節點的堆進行調整(時間複雜度O(lgn) ),也就是對根節點進行「下移」操作即可。 堆排序的總的時間複雜度為O(nlgn).

程式碼如下:

#!/usr/bin env python 
 
# 数组编号从 0开始 
def left(i): 
  return 2*i +1 
def right(i): 
  return 2*i+2 
 
#保持最大堆性质 使以i为根的子树成为最大堆 
def max_heapify(A, i, heap_size): 
  if heap_size <= 0: 
    return 
  l = left(i) 
  r = right(i) 
  largest = i # 选出子节点中较大的节点 
  if l A[largest]: 
    largest = l 
  if r A[largest]: 
    largest = r 
  if i != largest :#说明当前节点不是最大的,下移 
    A[i], A[largest] = A[largest], A[i] #交换 
    max_heapify(A, largest, heap_size)#继续追踪下移的点 
  #print A 
# 建堆  
def bulid_max_heap(A): 
  heap_size = len(A) 
  if heap_size >1: 
    node = heap_size/2 -1 
    while node >= 0: 
     max_heapify(A, node, heap_size) 
     node -=1 
 
# 堆排序 下标从0开始 
def heap_sort(A): 
  bulid_max_heap(A) 
  heap_size = len(A) 
  i = heap_size - 1 
  while i > 0 : 
    A[0],A[i] = A[i], A[0] # 堆中的最大值存入数组适当的位置,并且进行交换 
    heap_size -=1 # heap 大小 递减 1 
    i -= 1 # 存放堆中最大值的下标递减 1 
    max_heapify(A, 0, heap_size) 
 
if __name__ == &#39;__main__&#39; : 
 
  A = [10, -3, 5, 7, 1, 3, 7] 
  print &#39;Before sort:&#39;,A 
  heap_sort(A) 
  print &#39;After sort:&#39;,A

##不穩定,時間複雜度O( nlog n)

快速排序

快速排序演算法和合併排序演算法一樣,也是基於分治模式。子數組A[p…r]快速排序的分治過程的三個步驟為:

分解:把數組A[p…r]分成A[p…q-1]與A[ q+1…r]兩部分,其中A[p…q-1]中的每個元素都小於等於A[q]而A[q+1…r]中的每個元素都大於等於A[q ];

解決:透過遞歸呼叫快速排序,對子數組A[p…q-1]和A[q+1…r]進行排序;

合併:因為兩個子數組是就地排序的,所以不需要額外的操作。

對於劃分partition 每一輪迭代的開始,x=A[r], 對於任何數組下標k,有:

1) 如果p≤k≤i,則A[ k]≤x。

2) 如果i+1≤k≤j-1,則A[k]>x。

3) 如果k=r,則A[k]=x。

程式碼如下:

#!/usr/bin/env python 
# 快速排序 
&#39;&#39;&#39;&#39;&#39;
划分 使满足 以A[r]为基准对数组进行一个划分,比A[r]小的放在左边,
  比A[r]大的放在右边
快速排序的分治partition过程有两种方法,
一种是上面所述的两个指针索引一前一后逐步向后扫描的方法,
另一种方法是两个指针从首位向中间扫描的方法。
&#39;&#39;&#39; 
#p,r 是数组A的下标 
def partition1(A, p ,r): 
  &#39;&#39;&#39;&#39;&#39;
   方法一,两个指针索引一前一后逐步向后扫描的方法
  &#39;&#39;&#39; 
  x = A[r] 
  i = p-1 
  j = p 
  while j < r: 
    if A[j] < x: 
      i +=1 
      A[i], A[j] = A[j], A[i] 
    j += 1 
  A[i+1], A[r] = A[r], A[i+1] 
  return i+1 
 
def partition2(A, p, r): 
  &#39;&#39;&#39;&#39;&#39;
  两个指针从首尾向中间扫描的方法
  &#39;&#39;&#39; 
  i = p 
  j = r 
  x = A[p] 
  while i = x and i < j: 
      j -=1 
    A[i] = A[j] 
    while A[i]<=x and i < j: 
      i +=1 
    A[j] = A[i] 
  A[i] = x 
  return i 
 
# quick sort 
def quick_sort(A, p, r): 
  &#39;&#39;&#39;&#39;&#39;
    快速排序的最差时间复杂度为O(n2),平时时间复杂度为O(nlgn)
  &#39;&#39;&#39; 
  if p < r: 
    q = partition2(A, p, r) 
    quick_sort(A, p, q-1) 
    quick_sort(A, q+1, r) 
 
if __name__ == &#39;__main__&#39;: 
 
  A = [5,-4,6,3,7,11,1,2] 
  print &#39;Before sort:&#39;,A 
  quick_sort(A, 0, 7) 
  print &#39;After sort:&#39;,A

不穩定,時間複雜度最理想O(nlogn)最差時間O(n^2)

說下python中的序列:

列表、元組和字串都是序列,但是序列是什麼,為什麼它們如此特別呢?序列的兩個主要特點是索引操作符和切片操作符。索引操作符讓我們可以從序列中抓取一個特定項目。切片運算子讓我們能夠取得序列的一個切片,即一部分序列,如:a = ['aa','bb','cc'], print a[0] 為索引操作,print a[0:2]為切片操作。

希望透過此文掌握Python 演算法排序的知識,謝謝大家對本站的支持!

更多python 排序演算法總結及實例相關文章請關注PHP中文網!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn