Fabric是一個Python庫,只要目標機器支援ssh訪問,就可以藉助fabric來進行遠端操作(如在host1上對host2遠端運行shell命令),顯然,由於fabric是個Python package,故其它Python package都可以被import到fabric特有的fabfile.py腳本中
Fabric 是使用Python 開發的一個自動化運維和部署專案的一個好工具,可以透過SSH 的方式與遠端伺服器進行自動化交互,例如將本機檔案傳到伺服器,在伺服器上執行shell 指令。
下面給出一個自動化部署Django 專案的範例
# -*- coding: utf-8 -*- # 文件名要保存为 fabfile.py from __future__ import unicode_literals from fabric.api import * # 登录用户和主机名: env.user = 'root' # 如果没有设置,在需要登录的时候,fabric 会提示输入 env.password = 'youpassword' # 如果有多个主机,fabric会自动依次部署 env.hosts = ['www.example.com'] TAR_FILE_NAME = 'deploy.tar.gz' def pack(): """ 定义一个pack任务, 打一个tar包 :return: """ tar_files = ['*.py', 'static/*', 'templates/*', 'vue_app/', '*/*.py', 'requirements.txt'] exclude_files = ['fabfile.py', 'deploy/*', '*.tar.gz', '.DS_Store', '*/.DS_Store', '*/.*.py', '__pycache__/*'] exclude_files = ['--exclude=\'%s\'' % t for t in exclude_files] local('rm -f %s' % TAR_FILE_NAME) local('tar -czvf %s %s %s' % (TAR_FILE_NAME, ' '.join(exclude_files), ' '.join(tar_files))) print('在当前目录创建一个打包文件: %s' % TAR_FILE_NAME) def deploy(): """ 定义一个部署任务 :return: """ # 先进行打包 pack() # 远程服务器的临时文件 remote_tmp_tar = '/tmp/%s' % TAR_FILE_NAME run('rm -f %s' % remote_tmp_tar) # 上传tar文件至远程服务器, local_path, remote_path put(TAR_FILE_NAME, remote_tmp_tar) # 解压 remote_dist_base_dir = '/home/python/django_app' # 如果不存在, 则创建文件夹 run('mkdir -p %s' % remote_dist_dir) # cd 命令将远程主机的工作目录切换到指定目录 with cd(remote_dist_dir): print('解压文件到到目录: %s' % remote_dist_dir) run('tar -xzvf %s' % remote_tmp_tar) print('安装 requirements.txt 中的依赖包') # 我使用的是 python3 来开发 run('pip3 install -r requirements.txt') remote_settings_file = '%s/django_app/settings.py' % remote_dist_dir settings_file = 'deploy/settings.py' % name print('上传 settings.py 文件 %s' % settings_file) put(settings_file, remote_settings_file) nginx_file = 'deploy/django_app.conf' remote_nginx_file = '/etc/nginx/conf.d/django_app.conf' print('上传 nginx 配置文件 %s' % nginx_file) put(nginx_file, remote_nginx_file) # 在当前目录的子目录 deploy 中的 supervisor 配置文件上传至服务器 supervisor_file = 'deploy/django_app.ini' remote_supervisor_file = '/etc/supervisord.d/django_app.ini' print('上传 supervisor 配置文件 %s' % supervisor_file) put(supervisor_file, remote_supervisor_file) # 重新加载 nginx 的配置文件 run('nginx -s reload') run('nginx -t') # 删除本地的打包文件 local('rm -f %s' % TAR_FILE_NAME) # 载入最新的配置文件,停止原有进程并按新的配置启动所有进程 run('supervisorctl reload') # 执行 restart all,start 或者 stop fabric 都会提示错误,然后中止运行 # 但是服务器上查看日志,supervisor 有重启 # run('supervisorctl restart all')
執行pack 任務
fab pack<br>
執行deploy 任務
fab deploy
再給大家分享一個使用Fabric進行程式碼的自動化部署
#coding=utf-8 from fabric.api import local, abort, settings, env, cd, run from fabric.colors import * from fabric.contrib.console import confirm env.hosts = ["root@115.28.×××××"] env.password = "×××××" def get_git_status(): git_status_result = local("git status", capture=True) if "无文件要提交,干净的工作区" not in git_status_result: print red("****当前分支还有文件没有提交") print git_status_result abort("****已经终止") def local_unit_test(): with settings(warn_only=True): test_result = local("python manage.py test") if test_result.failed: print test_result if not confirm(red("****单元测试失败,是否继续?")): abort("****已经终止") def server_unit_test(): with settings(warn_only=True): test_result = run("python manage.py test") if test_result.failed: print test_result if not confirm(red("****单元测试失败,是否继续?")): abort("****已经终止") def upload_code(): local("git push origin dev") print green("****代码上传成功") def deploy_at_server(): print green("****ssh到服务器进行下列操作") with cd("/var/www/××××××"): #print run("pwd") print green("****将在远程仓库下载代码") run("git checkout dev") get_git_status() run("git pull origin dev") print green("****将在服务器上运行单元测试") server_unit_test() run("service apache2 restart", pty=False) print green("****重启apache2成功") print green("********代码部署成功********") def deploy(): get_git_status() local("git checkout dev", capture=False) print green("****切换到dev分支") get_git_status() print green("****将开始运行单元测试") local_unit_test() print green("****单元测试完成,开始上传代码") upload_code() deploy_at_server()
fabric可以將自動化部署或多機操作的命令固化到一個腳本裡,從而減少手動的操作。上面是今天第一次接觸這東西後寫的,確實很實用。運行fab deploy
就行了。
主要邏輯就是將本地的dev分支跑單元測試,然後提交到伺服器,ssh登陸到伺服器,然後pull下來,再跑單元測試,然後重啟apache2。第一次寫,可能比較簡單,會持續改進。
更多Python自動化維運與部署專案工具Fabric使用實例相關文章請關注PHP中文網!

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。

Python適合快速開發和數據處理,而C 適合高性能和底層控制。 1)Python易用,語法簡潔,適用於數據科學和Web開發。 2)C 性能高,控制精確,常用於遊戲和系統編程。

學習Python所需時間因人而異,主要受之前的編程經驗、學習動機、學習資源和方法及學習節奏的影響。設定現實的學習目標並通過實踐項目學習效果最佳。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

Atom編輯器mac版下載
最受歡迎的的開源編輯器

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器