一、概述
Android提供了LRUCache類,可以方便的使用它來實現LRU演算法的快取。 Java提供了LinkedHashMap,可以用該類別很方便的實作LRU演算法,Java的LRULinkedHashMap就是直接繼承了LinkedHashMap,進行了極少的改動後就可以實作LRU演算法。
二、Java的LRU演算法
Java的LRU演算法的基礎是LinkedHashMap,LinkedHashMap繼承了HashMap,在HashMap的基礎上進行了一定的改動,以實作LRU演算法。
1、HashMap
首先需要說明的是,HashMap將每個節點資訊儲存在Entry
static class Entry<K,V> implements Map.Entry<K,V> { final K key; V value; Entry<K,V> next; int hash; /** * Creates new entry. */ Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; } public final K getKey() { return key; } public final V getValue() { return value; } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } public final int hashCode() { return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue()); } public final String toString() { return getKey() + "=" + getValue(); } /** * This method is invoked whenever the value in an entry is * overwritten by an invocation of put(k,v) for a key k that's already * in the HashMap. */ void recordAccess(HashMap<K,V> m) { } /** * This method is invoked whenever the entry is * removed from the table. */ void recordRemoval(HashMap<K,V> m) { } }
下面貼一下HashMap的put方法的程式碼,並進行分析
public V put(K key, V value) { if (table == EMPTY_TABLE) { inflateTable(threshold); } if (key == null) return putForNullKey(value); //以上信息不关心,下面是正常的插入逻辑。 //首先计算hashCode int hash = hash(key); //通过计算得到的hashCode,计算出hashCode在数组中的位置 int i = indexFor(hash, table.length); //for循环,找到在HashMap中是否存在一个节点,对应的key与传入的key完全一致。如果存在,说明用户想要替换该key对应的value值,因此直接替换value即可返回。 for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } //逻辑执行到此处,说明HashMap中不存在完全一致的kye.调用addEntry,新建一个节点保存key、value信息,并增加到HashMap中 modCount++; addEntry(hash, key, value, i); return null; }
在上面的程式碼中增加了一些註釋,可以對整體有一個了解。以下具體對一些值得分析的點進行說明。
<1> int i = indexFor(hash, table.length);
可以看一下原始碼:
static int indexFor(int h, int length) { // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2"; return h & (length-1); }
為什麼得到的hashCode(h)要和(length-1)進行位元與運算?這是為了確保去除掉h的高位資訊。如果數組大小為8(1000),而計算出的h的值為10(1010),如果直接取得數組的index為10的數據,肯定會拋出數組超出界限異常。所以使用位元與(0111&1010),成功清除掉高位元訊息,得到2(0010),表示對應數組中index為2的資料。效果與取餘相同,但是位元運算的效率明顯較高。
但是這樣有一個問題,如果length為9,取得得length-1資訊為8(1000),這樣進行位元運算,不但不能清除高位元數據,得到的結果肯定不對。所以數組的大小一定有什麼特別的地方。透過查看原始碼,可以發現,HashMap無時無刻不在保證對應的陣列個數為2的n次方。
首先在put的時候,呼叫inflateTable方法。重點在於roundUpToPowerOf2方法,雖然它的內容包含大量的位元相關的運算和處理,沒有看的很明白,但是註解已經明確了,會保證數組的個數為2的n次方。
private void inflateTable(int toSize) { // Find a power of 2 >= toSize int capacity = roundUpToPowerOf2(toSize); threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1); table = new Entry[capacity]; initHashSeedAsNeeded(capacity); }
其次,在addEntry等其他位置,也會使用(2 * table.length)、table.length
<2> for (Entry<K,V> e = table[i]; e != null; e = e.next)
因為HashMap使用的是陣列加鍊錶的形式,所以透過hashCode取得到在陣列中的位置後,得到的不是一個Entry
<3> addEntry(hash, key, value, i);
先判斷數組個數是否超出閾值,如果超過,需要增加數組個數。然後會新建一個Entry,並加入到陣列中。
/** * Adds a new entry with the specified key, value and hash code to * the specified bucket. It is the responsibility of this * method to resize the table if appropriate. * * Subclass overrides this to alter the behavior of put method. */ void addEntry(int hash, K key, V value, int bucketIndex) { if ((size >= threshold) && (null != table[bucketIndex])) { resize(2 * table.length); hash = (null != key) ? hash(key) : 0; bucketIndex = indexFor(hash, table.length); } createEntry(hash, key, value, bucketIndex); } /** * Like addEntry except that this version is used when creating entries * as part of Map construction or "pseudo-construction" (cloning, * deserialization). This version needn't worry about resizing the table. * * Subclass overrides this to alter the behavior of HashMap(Map), * clone, and readObject. */ void createEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex]; table[bucketIndex] = new Entry<>(hash, key, value, e); size++; }
2、LinkedHashMap
LinkedHashMap在HashMap的基礎上,並進行了修改。首先將Entry由單向鍊錶改成雙向鍊錶。增加了before和after兩個隊Entry的引用。
private static class Entry<K,V> extends HashMap.Entry<K,V> { // These fields comprise the doubly linked list used for iteration. Entry<K,V> before, after; Entry(int hash, K key, V value, HashMap.Entry<K,V> next) { super(hash, key, value, next); } /** * Removes this entry from the linked list. */ private void remove() { before.after = after; after.before = before; } /** * Inserts this entry before the specified existing entry in the list. */ private void addBefore(Entry<K,V> existingEntry) { after = existingEntry; before = existingEntry.before; before.after = this; after.before = this; } /** * This method is invoked by the superclass whenever the value * of a pre-existing entry is read by Map.get or modified by Map.set. * If the enclosing Map is access-ordered, it moves the entry * to the end of the list; otherwise, it does nothing. */ void recordAccess(HashMap<K,V> m) { LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m; if (lm.accessOrder) { lm.modCount++; remove(); addBefore(lm.header); } } void recordRemoval(HashMap<K,V> m) { remove(); } }
同時,LinkedHashMap提供了一個對Entry的引用header(private transient Entry
LinkedHashMap並沒有提供put方法,但是LinkedHashMap重寫了addEntry和createEntry方法,如下:
/** * This override alters behavior of superclass put method. It causes newly * allocated entry to get inserted at the end of the linked list and * removes the eldest entry if appropriate. */ void addEntry(int hash, K key, V value, int bucketIndex) { super.addEntry(hash, key, value, bucketIndex); // Remove eldest entry if instructed Entry<K,V> eldest = header.after; if (removeEldestEntry(eldest)) { removeEntryForKey(eldest.key); } } /** * This override differs from addEntry in that it doesn't resize the * table or remove the eldest entry. */ void createEntry(int hash, K key, V value, int bucketIndex) { HashMap.Entry<K,V> old = table[bucketIndex]; Entry<K,V> e = new Entry<>(hash, key, value, old); table[bucketIndex] = e; e.addBefore(header); size++; }
HashMap的put方法,呼叫了addEntry方法;HashMap的addEntry方法又呼叫了createEntry方法。因此可以把上面的兩個方法和HashMap中的內容放在一起,方便分析,形成如下方法:
void addEntry(int hash, K key, V value, int bucketIndex) { if ((size >= threshold) && (null != table[bucketIndex])) { resize(2 * table.length); hash = (null != key) ? hash(key) : 0; bucketIndex = indexFor(hash, table.length); } HashMap.Entry<K,V> old = table[bucketIndex]; Entry<K,V> e = new Entry<>(hash, key, value, old); table[bucketIndex] = e; e.addBefore(header); size++; // Remove eldest entry if instructed Entry<K,V> eldest = header.after; if (removeEldestEntry(eldest)) { removeEntryForKey(eldest.key); } }
同样,先判断是否超出阈值,超出则增加数组的个数。然后创建Entry对象,并加入到HashMap对应的数组和链表中。与HashMap不同的是LinkedHashMap增加了e.addBefore(header);和removeEntryForKey(eldest.key);这样两个操作。
首先分析一下e.addBefore(header)。其中e是LinkedHashMap.Entry对象,addBefore代码如下,作用就是讲header与当前对象相关联,使当前对象增加到header的双向链表的尾部
(header.before): private void addBefore(Entry<K,V> existingEntry) { after = existingEntry; before = existingEntry.before; before.after = this; after.before = this; }
其次是另一个重点,代码如下:
// Remove eldest entry if instructed Entry<K,V> eldest = header.after; if (removeEldestEntry(eldest)) { removeEntryForKey(eldest.key); }
其中,removeEldestEntry判断是否需要删除最近最不常使用的那个节点。LinkedHashMap中的removeEldestEntry(eldest)方法永远返回false,如果我们要实现LRU算法,就需要重写这个方法,判断在什么情况下,删除最近最不常使用的节点。removeEntryForKey的作用就是将key对应的节点在HashMap的数组加链表结构中删除,源码如下:
final Entry<K,V> removeEntryForKey(Object key) { if (size == 0) { return null; } int hash = (key == null) ? 0 : hash(key); int i = indexFor(hash, table.length); Entry<K,V> prev = table[i]; Entry<K,V> e = prev; while (e != null) { Entry<K,V> next = e.next; Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; }
removeEntryForKey是HashMap的方法,对LinkedHashMap中header的双向链表无能为力,而LinkedHashMap又没有重写这个方法,那header的双向链表要如何处理呢。
仔细看一下代码,可以看到在成功删除了HashMap中的节点后,调用了e.recordRemoval(this);方法。这个方法在HashMap中为空,LinkedHashMap的Entry则实现了这个方法。其中remove()方法中的两行代码为双向链表中删除当前节点的标准代码,不解释。
/** * Removes this entry from the linked list. */ private void remove() { before.after = after; after.before = before; }void recordRemoval(HashMap<K,V> m) { remove(); }
以上,LinkedHashMap增加节点的代码分析完毕,可以看到完美的将新增的节点放在了header双向链表的末尾。
但是,这样显然是先进先出的算法,而不是最近最不常使用算法。需要在get的时候,更新header双向链表,把刚刚get的节点放到header双向链表的末尾。我们来看看get的源码:
public V get(Object key) { Entry<K,V> e = (Entry<K,V>)getEntry(key); if (e == null) return null; e.recordAccess(this); return e.value; }
代码很短,第一行的getEntry调用的是HashMap的getEntry方法,不需要解释。真正处理header双向链表的代码是e.recordAccess(this)。看一下代码:
/** * Removes this entry from the linked list. */ private void remove() { before.after = after; after.before = before; } /** * Inserts this entry before the specified existing entry in the list. */ private void addBefore(Entry<K,V> existingEntry) { after = existingEntry; before = existingEntry.before; before.after = this; after.before = this; } /** * This method is invoked by the superclass whenever the value * of a pre-existing entry is read by Map.get or modified by Map.set. * If the enclosing Map is access-ordered, it moves the entry * to the end of the list; otherwise, it does nothing. */ void recordAccess(HashMap<K,V> m) { LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m; if (lm.accessOrder) { lm.modCount++; remove(); addBefore(lm.header); } }
首先在header双向链表中删除当前节点,再将当前节点添加到header双向链表的末尾。当然,在调用LinkedHashMap的时候,需要将accessOrder设置为true,否则就是FIFO算法。
三、Android的LRU算法
Android同样提供了HashMap和LinkedHashMap,而且总体思路有些类似,但是实现的细节明显不同。而且Android提供的LruCache虽然使用了LinkedHashMap,但是实现的思路并不一样。Java需要重写removeEldestEntry来判断是否删除节点;而Android需要重写LruCache的sizeOf,返回当前节点的大小,Android会根据这个大小判断是否超出了限制,进行调用trimToSize方法清除多余的节点。
Android的sizeOf方法默认返回1,默认的方式是判断HashMap中的数据个数是否超出了设置的阈值。也可以重写sizeOf方法,返回当前节点的大小。Android的safeSizeOf会调用sizeOf方法,其他判断阈值的方法会调用safeSizeOf方法,进行加减操作并判断阈值。进而判断是否需要清除节点。
Java的removeEldestEntry方法,也可以达到同样的效果。Java需要使用者自己提供整个判断的过程,两者思路还是有些区别的。
sizeOf,safeSizeOf不需要说明,而put和get方法,虽然和Java的实现方式不完全一样,但是思路是相同的,也不需要分析。在LruCache中put方法的最后,会调用trimToSize方法,这个方法用于清除超出的节点。它的代码如下:
public void trimToSize(int maxSize) { while (true) { Object key; Object value; synchronized (this) { if ((this.size < 0) || ((this.map.isEmpty()) && (this.size != 0))) { throw new IllegalStateException(getClass().getName() + ".sizeOf() is reporting inconsistent results!"); } if (size <= maxSize) { break; } Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next(); key = toEvict.getKey(); value = toEvict.getValue(); this.map.remove(key); this.size -= safeSizeOf(key, value); this.evictionCount += 1; } entryRemoved(true, key, value, null); } }
重点需要说明的是Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next();这行代码。它前面的代码判断是否需要删除最近最不常使用的节点,后面的代码用于删除具体的节点。这行代码用于获取最近最不常使用的节点。
首先需要说明的问题是,Android的LinkedHashMap和Java的LinkedHashMap在思路上一样,也是使用header保存双向链表。在put和get的时候,会更新对应的节点,保存header.after指向最久没有使用的节点;header.before用于指向刚刚使用过的节点。所以Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next();这行最终肯定是获取header.after节点。下面逐步分析代码,就可以看到是如何实现的了。
首先,map.entrySet(),HashMap定义了这个方法,LinkedHashMap没有重写这个方法。因此调用的是HashMap对应的方法:
public Set<Entry<K, V>> entrySet() { Set<Entry<K, V>> es = entrySet; return (es != null) ? es : (entrySet = new EntrySet()); }
上面代码不需要细说,new一个EntrySet类的实例。而EntrySet也是在HashMap中定义,LinkedHashMap中没有。
private final class EntrySet extends AbstractSet<Entry<K, V>> { public Iterator<Entry<K, V>> iterator() { return newEntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Entry)) return false; Entry<?, ?> e = (Entry<?, ?>) o; return containsMapping(e.getKey(), e.getValue()); } public boolean remove(Object o) { if (!(o instanceof Entry)) return false; Entry<?, ?> e = (Entry<?, ?>)o; return removeMapping(e.getKey(), e.getValue()); } public int size() { return size; } public boolean isEmpty() { return size == 0; } public void clear() { HashMap.this.clear(); } }
Iterator
代码中很明显的可以看出,Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next(),就是要调用newEntryIterator().next(),就是调用(new EntryIterator()).next()。而EntryIterator类在LinkedHashMap中是有定义的。
private final class EntryIterator extends LinkedHashIterator<Map.Entry<K, V>> { public final Map.Entry<K, V> next() { return nextEntry(); } } private abstract class LinkedHashIterator<T> implements Iterator<T> { LinkedEntry<K, V> next = header.nxt; LinkedEntry<K, V> lastReturned = null; int expectedModCount = modCount; public final boolean hasNext() { return next != header; } final LinkedEntry<K, V> nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); LinkedEntry<K, V> e = next; if (e == header) throw new NoSuchElementException(); next = e.nxt; return lastReturned = e; } public final void remove() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); if (lastReturned == null) throw new IllegalStateException(); LinkedHashMap.this.remove(lastReturned.key); lastReturned = null; expectedModCount = modCount; } }
现在可以得到结论,trimToSize中的那行代码得到的就是header.next对应的节点,也就是最近最不常使用的那个节点。
以上就是Java和Android的LRU缓存及实现原理 的内容,更多相关内容请关注PHP中文网(www.php.cn)!

JavaachievesPlatFormIndependencethroughTheJavavIrtualMachine(JVM),允許Codetorunondifferentoperatingsystemsswithoutmodification.thejvmcompilesjavacodeintoplatform-interploplatform-interpectentbybyteentbytybyteentbybytecode,whatittheninternterninterpretsandectectececutesoneonthepecificos,atrafficteyos,Afferctinginginginginginginginginginginginginginginginginginginginginginginginginginginginginginginginginginginginginginginginginginginging

JavaispoperfulduetoitsplatFormitiondence,對象與偏見,RichstandardLibrary,PerformanceCapabilities和StrongsecurityFeatures.1)Platform-dimplighandependectionceallowsenceallowsenceallowsenceallowsencationSapplicationStornanyDevicesupportingJava.2)

Java的頂級功能包括:1)面向對象編程,支持多態性,提升代碼的靈活性和可維護性;2)異常處理機制,通過try-catch-finally塊提高代碼的魯棒性;3)垃圾回收,簡化內存管理;4)泛型,增強類型安全性;5)ambda表達式和函數式編程,使代碼更簡潔和表達性強;6)豐富的標準庫,提供優化過的數據結構和算法。

javaisnotirelyplatemententedduetojvmvariationsandnativecodinteinteration,butitlargelyupholdsitsitsworapromise.1)javacompilestobytecoderunbythejvm

thejavavirtualmachine(JVM)IsanabtractComputingmachinecrucialforjavaexecutionasitrunsjavabytecode,使“ writeononce,runanywhere”能力

Javaremainsagoodlanguageduetoitscontinuousevolutionandrobustecosystem.1)Lambdaexpressionsenhancecodereadabilityandenablefunctionalprogramming.2)Streamsallowforefficientdataprocessing,particularlywithlargedatasets.3)ThemodularsystemintroducedinJava9im

Javaisgreatduetoitsplatformindependence,robustOOPsupport,extensivelibraries,andstrongcommunity.1)PlatformindependenceviaJVMallowscodetorunonvariousplatforms.2)OOPfeatureslikeencapsulation,inheritance,andpolymorphismenablemodularandscalablecode.3)Rich

Java的五大特色是多態性、Lambda表達式、StreamsAPI、泛型和異常處理。 1.多態性讓不同類的對象可以作為共同基類的對象使用。 2.Lambda表達式使代碼更簡潔,特別適合處理集合和流。 3.StreamsAPI高效處理大數據集,支持聲明式操作。 4.泛型提供類型安全和重用性,編譯時捕獲類型錯誤。 5.異常處理幫助優雅處理錯誤,編寫可靠軟件。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

WebStorm Mac版
好用的JavaScript開發工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

記事本++7.3.1
好用且免費的程式碼編輯器