Initialization
# 检查是否已经安装以及版本号 >>> import sqlalchemy >>> sqlalchemy.__version__ ’1.1.4‘
>>> from sqlalchemy.ext.declarative import declarative_base # model都是要继承自Base >>> Base = declarative_base() >>> from sqlalchemy import Column, Integer, String >>> class User(Base): ... __tablename__ = 'users' # 指定数据表名 ... ... id = Column(Integer, primary_key=True) ... name = Column(String(50)) ... fullname = Column(String(50)) ... password = Column(String(50)) ... ... def __repr__(self): ... return "<user>" % ( ... self.name, self.fullname, self.password) # 查看创建的数据表结构 >>> User.__table__ Table('users', MetaData(bind=None), Column('id', Integer(), table=<users>, primary_key=True, nullable=False), Column('name', String(length=50), table=<users>), Column('fullname', String(length=50), table=<users>), Column('password', String(length=50), table=<users>), schema=None)</users></users></users></users></user>
正式建立資料表
>>> from sqlalchemy import create_engine # 连接到mysql >>> engine = create_engine("mysql://root:root@localhost:3306/python?charset=utf8", encoding="utf-8", echo=True) # 正式创建数据表 >>> Base.metadata.create_all(engine) CREATE TABLE users ( id INTEGER NOT NULL AUTO_INCREMENT, name VARCHAR(50), fullname VARCHAR(50), password VARCHAR(50), PRIMARY KEY (id) )
Creating a Session
下面的操作都是要透過會話物件操作
>>> from sqlalchemy.orm import sessionmaker >>> Session = sessionmaker(bind=engine) >>> session = Session()
Adding and Updating Objects
來過濾,first
只列出第一個查詢到的對象>>> ed_user = User(name='ed', fullname='Ed Jones', password='edspassword') >>> session.add(ed_user)
使用
add_all,一次性添加多個對象
>>> our_user = session.query(User).filter_by(name='ed').first() BEGIN (implicit) INSERT INTO users (name, fullname, password) VALUES (?, ?, ?) ('ed', 'Ed Jones', 'edspassword') SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password FROM users WHERE users.name = ? LIMIT ? OFFSET ? ('ed', 1, 0) >>> our_user <user> >>> ed_user is our_user True</user>Session很智能,比如說,它知道Ed Jones被修改了
>>> session.add_all([ ... User(name='wendy', fullname='Wendy Williams', password='foobar'), ... User(name='mary', fullname='Mary Contrary', password='xxg527'), ... User(name='fred', fullname='Fred Flinstone', password='blah')])
Session很智能,比如說,它知道Ed Jones被修改了
# 可以直接修改ed_user对象 >>> ed_user.password = 'f8s7ccs' # session会自动知道哪些数据被修改了 >>> session.dirty IdentitySet([<user>]) # session也可以知道哪些对象被新建了 >>> session.new IdentitySet([<user>, <user>, <user>])</user></user></user></user>Session很智能,比如說,它知道Ed Jones被修改了
>>> session.commit() UPDATE users SET password=? WHERE users.id = ? ('f8s7ccs', 1) INSERT INTO users (name, fullname, password) VALUES (?, ?, ?) ('wendy', 'Wendy Williams', 'foobar') INSERT INTO users (name, fullname, password) VALUES (?, ?, ?) ('mary', 'Mary Contrary', 'xxg527') INSERT INTO users (name, fullname, password) VALUES (?, ?, ?) ('fred', 'Fred Flinstone', 'blah') COMMIT >>> ed_user.id BEGIN (implicit) SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password FROM users WHERE users.id = ? (1,) 1Session很智能,比如說,它知道Ed Jones被修改了
>>> ed_user.name = 'Edwardo' and we’ll add another erroneous user, fake_user: >>> fake_user = User(name='fakeuser', fullname='Invalid', password='12345') >>> session.add(fake_user) Querying the session, we can see that they’re flushed into the current transaction:
Session很智能,比如說,它知道Ed Jones被修改了對資料庫進行了變更,自然要進行
commit,從
echo語句我們可以看出,我們更新了1個對象,創建了3個對象。 >>> session.query(User).filter(User.name.in_(['Edwardo', 'fakeuser'])).all()
UPDATE users SET name=? WHERE users.id = ?
('Edwardo', 1)
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
('fakeuser', 'Invalid', '12345')
SELECT users.id AS users_id,
users.name AS users_name,
users.fullname AS users_fullname,
users.password AS users_password
FROM users
WHERE users.name IN (?, ?)
('Edwardo', 'fakeuser')
[<user>, <user>]</user></user>
Rolling Back因為Session是工作在一個transaction內部,有時候我們可能不小心做了一些誤刪除的操作,可以回滾。我們先修改ed_user的使用者名稱為
Edwardo,然後重新新增一個User,但記住這個時候我們還沒有
commit
>>> session.rollback() ROLLBACK >>> ed_user.name BEGIN (implicit) SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password FROM users WHERE users.id = ? (1,) u'ed' >>> fake_user in session False issuing a SELECT illustrates the changes made to the database:查詢檢驗一下
>>> session.query(User).filter(User.name.in_(['ed', 'fakeuser'])).all() SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password FROM users WHERE users.name IN (?, ?) ('ed', 'fakeuser') [<user>]</user>
回滾,我們可以知道ed_user's name is back to
ed以及
fake_user has been kicked out of the sessionuserdake,消失了,ed用戶的名字重新變回了ed
而不是Edwordo
<pre class="brush:php;toolbar:false">>>> session.query(User).filter(User.name.like('%ed')).count()
2
>>> from sqlalchemy import func
>>> session.query(func.count(User.name), User.name).group_by(User.name).all()
[(1, u'ed'), (1, u'fred'), (1, u'mary'), (1, u'wendy')]</pre>
Couting
用於查詢操作相對應的count()
reeereee
query
方法可以建立一個Query object
依照使用者id進行排序來進行查詢
>>> for instance in session.query(User).order_by(User.id): ... print(instance.name, instance.fullname) ed Ed Jones wendy Wendy Williams mary Mary Contrary fred Fred Flinstonequery方法也可以接收ORM-instrumented descriptors作為參數。返回結果是一個named tuples
>>> for name, fullname in session.query(User.name, User.fullname): ... print(name, fullname) ed Ed Jones wendy Wendy Williams mary Mary Contrary fred Fred FlinstoneThe tuples returned by Query are named tuples, supplied by the KeyedTuple class, and can be treated much like an ordinary Python object. The names are the same as the attribute's name for an attribute, and the class name for a class:
>>> for row in session.query(User, User.name).all(): ... print(row.User, row.name) <user> ed <user> wendy <user> mary <user> fred</user></user></user></user>You can control the names of inpidual column expressions using the
label()
construct, which is available from any ColumnElement-deriveive object, as d object class led object, sappd object, as d object tod d object, as class ob as User.name):>>> for row in session.query(User.name.label('name_label')).all(): ... print(row.name_label) ed wendy mary fred
The name given to a full entity such as User, assuming that multiple entities are present in the call to query(), can be controlled using
aliased)🎝 Query include issuing LIMIT and OFFSET, most conveniently using Python array slices and typically in conjunction with ORDER BY:<pre class="brush:php;toolbar:false">>>> from sqlalchemy.orm import aliased
>>> user_alias = aliased(User, name='user_alias')
>>> for row in session.query(user_alias, user_alias.name).all():
... print(row.user_alias)
<user>
<user>
<user>
<user></user></user></user></user></pre>
The Query object is fremully obects, moting thatry object is falkully 集, mi allym be added . For example, to query for users named “ed” with a full name of “Ed Jones”, you can call
twice, which joins criteria using AND
:
>>> for u in session.query(User).order_by(User.id)[1:3]: ... print(u) <user> <user> and filtering results, which is accomplished either with filter_by(), which uses keyword arguments: >>> for name, in session.query(User.name).\ ... filter_by(fullname='Ed Jones'): ... print(name) ed >>> for name, in session.query(User.name).\ ... filter(User.fullname=='Ed Jones'): ... print(name) ed</user></user>
filter )最常用的一些operators
>>> for user in session.query(User).\ ... filter(User.name=='ed').\ ... filter(User.fullname=='Ed Jones'): ... print(user) <user> Common Filter Operators</user>
Building a Relationship
創建物件與物件之間的關係,下面我們新建一個Address表,下面的操作相比django的orm繁瑣一些,要同時在兩個class內部同時設定relationship
equals: query.filter(User.name == 'ed') not equals: query.filter(User.name != 'ed') LIKE: query.filter(User.name.like('%ed%')) IN: query.filter(User.name.in_(['ed', 'wendy', 'jack'])) # works with query objects too: query.filter(User.name.in_( session.query(User.name).filter(User.name.like('%ed%')) )) NOT IN: query.filter(User.name.in_(['ed', 'wendy', 'jack'])) IS NULL: query.filter(User.name == None) # alternatively, if pep8/linters are a concern query.filter(User.name.is_(None)) IS NOT NULL: query.filter(User.name != None) # alternatively, if pep8/linters are a concern query.filter(User.name.isnot(None)) AND: # use and_() from sqlalchemy import and_ query.filter(and_(User.name == 'ed', User.fullname == 'Ed Jones')) # or send multiple expressions to .filter() query.filter(User.name == 'ed', User.fullname == 'Ed Jones') # or chain multiple filter()/filter_by() calls query.filter(User.name == 'ed').filter(User.fullname == 'Ed Jones') Note Make sure you use and_() and not the Python and operator! OR: from sqlalchemy import or_ query.filter(or_(User.name == 'ed', User.name == 'wendy')) Note Make sure you use or_() and not the Python or operator! MATCH: query.filter(User.name.match('wendy')) Note match() uses a database-specific MATCH or CONTAINS function; its behavior will vary by backend and is not available on some backends such as SQLite.
Working with Related Objects
現在我們創建了一個User,與它對應的一個空addresses集合也將創立。集合類型可以是各種合法類型,例如set/dictionaries(see Customizing Collection Access for details),但是預設集合是一個list。 現在我們再來建立一個使用者Jack
>>> from sqlalchemy import ForeignKey >>> from sqlalchemy.orm import relationship >>> class Address(Base): ... __tablename__ = 'addresses' ... id = Column(Integer, primary_key=True) ... email_address = Column(String(50), nullable=False) ... user_id = Column(Integer, ForeignKey('users.id')) ... ... user = relationship("User", back_populates="addresses") # 将地址表和用户表关联 ... ... def __repr__(self): ... return "<address>" % self.email_address # 在用户表中还要重新设置一次 >>> User.addresses = relationship( ... "Address", order_by=Address.id, back_populates="user") >>> Base.metadata.create_all(engine)</address>We are free to add Address objects on our User object. In this case we just assign a full list directly:現在我們將使用者和一些地址關聯起來When using a bidirectional relationship, elements added in one direction automatically become visible in the other direction. This behavior occurs based on attribute on-change events and is evaluated in Python, without using 地址
>>> jack = User(name='jack', fullname='Jack Bean', password='gjffdd') >>> jack.addresses []Let's add and commit Jack Bean to the database. jack as well as the two Address members in the corresponding addresses collection are both added to the session at once, using aprocess collectionn both added to the session at once, using a processsnown 如何保存🜥到資料庫
>>> jack.addresses = [ ... Address(email_address='jack@google.com'), ... Address(email_address='j25@yahoo.com')]Querying for Jack, we get just Jack back. No SQL is yet issued for Jack's addresses:
>>> jack.addresses[1] <address> >>> jack.addresses[1].user <user></user> </address>When we accessed the addresses collection, SQL was suddenly sload. addresses collection is now loaded and behaves just like an ordinary list. We'll cover ways to optimize the loading of this collection in a bit.Delete
刪除操作,接下來我們嘗試刪除地址會因此刪除
>>> session.delete(jack) >>> session.query(User).filter_by(name='jack').count() 0 So far, so good. How about Jack’s Address objects ? >>> session.query(Address).filter( ... Address.email_address.in_(['jack@google.com', 'j25@yahoo.com']) ... ).count() 2
Uh oh, they’re still there ! Analyzing the flush SQL, we can see that the user_id column of each address was set to NULL, but the rows weren’t deleted
. SQLAlchemy doesn’t assume that deletes cascade
, you have to tell it to do so. Configuring delete/delete-orphan Cascade
. We will configure cascade options on the User.addresses relationship
to change the behavior. While SQLAlchemy allows you to add new attributes and relationships to mappings at any point in time, in this case the existing relationship needs to be removed, so we need to tear down the mappings completely and start again - we’ll close the Session:
直接close来rollback,并不进行commit
>>> session.close() ROLLBACK
Use a new declarative_base():
>>> Base = declarative_base()
Next we’ll declare the User class, adding in the addresses relationship
including the cascade configuration (we’ll leave the constructor out too):
>>> class User(Base): ... __tablename__ = 'users' ... ... id = Column(Integer, primary_key=True) ... name = Column(String(50)) ... fullname = Column(String(50)) ... password = Column(String(50)) ... ... addresses = relationship("Address", back_populates='user', ... cascade="all, delete, delete-orphan") ... ... def __repr__(self): ... return "<user>" % ( ... self.name, self.fullname, self.password)</user>
Then we recreate Address, noting that in this case
we’ve created the Address.user relationship via the User class already:
>>> class Address(Base): ... __tablename__ = 'addresses' ... id = Column(Integer, primary_key=True) ... email_address = Column(String(50), nullable=False) ... user_id = Column(Integer, ForeignKey('users.id')) ... user = relationship("User", back_populates="addresses") ... ... def __repr__(self): ... return "<address>" % self.email_address</address>
Now when we load the user jack (below using get(), which loads by primary key), removing an address from the corresponding addresses collection will result in that Address being deleted:
# load Jack by primary key >>> jack = session.query(User).get(5) # remove one Address (lazy load fires off) >>> del jack.addresses[1] # only one address remains >>> session.query(Address).filter( ... Address.email_address.in_(['jack@google.com', 'j25@yahoo.com']) ... ).count() 1
Deleting Jack will delete both Jack and the remaining Address associated with the user:
>>> session.delete(jack) >>> session.query(User).filter_by(name='jack').count() 0 >>> session.query(Address).filter( ... Address.email_address.in_(['jack@google.com', 'j25@yahoo.com']) ... ).count() 0
Further detail on configuration of cascades is at Cascades. The cascade functionality can also integrate smoothly with the ON DELETE CASCADE functionality of the relational database. See Using Passive Deletes for details.
backref
上面同时设置两个relationship太麻烦了,可以使用backref
from sqlalchemy import Integer, ForeignKey, String, Column from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship Base = declarative_base() class User(Base): __tablename__ = 'user' id = Column(Integer, primary_key=True) name = Column(String) addresses = relationship("Address", backref="user") class Address(Base): __tablename__ = 'address' id = Column(Integer, primary_key=True) email = Column(String) user_id = Column(Integer, ForeignKey('user.id'))
The above configuration establishes a collection of Address objects on User called User.addresses
. It also establishes a .user
attribute on Address which will refer to the parent User object.
In fact, the backref keyword is only a common shortcut for placing a second relationship() onto the Address mapping, including the establishment of an event listener on both sides which will mirror attribute operations in both directions. The above configuration is equivalent to:
rom sqlalchemy import Integer, ForeignKey, String, Column from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship Base = declarative_base() class User(Base): __tablename__ = 'user' id = Column(Integer, primary_key=True) name = Column(String) addresses = relationship("Address", back_populates="user") class Address(Base): __tablename__ = 'address' id = Column(Integer, primary_key=True) email = Column(String) user_id = Column(Integer, ForeignKey('user.id')) user = relationship("User", back_populates="addresses")
Above, we add a .user relationship to Address explicitly. On both relationships, the back_populates
directive tells each relationship about the other one, indicating that they should establish “bidirectional” behavior between each other. The primary effect of this configuration is that the relationship adds event handlers to both attributes which have the behavior of “when an append or set event occurs here, set ourselves onto the incoming attribute using this particular attribute name”. The behavior is illustrated as follows. Start with a User and an Address instance. The .addresses collection
is empty, and the .user attribute is None
:
>>> u1 = User() >>> a1 = Address() >>> u1.addresses [] >>> print(a1.user) None
However, once the Address is appended to the u1.addresses collection, both the collection and the scalar attribute have been populated:
>>> u1.addresses.append(a1) >>> u1.addresses [<__main__.address>] >>> a1.user <__main__.user></__main__.user></__main__.address>
This behavior of course works in reverse for removal operations as well, as well as for equivalent operations on both sides. Such as when .user is set again to None, the Address object is removed from the reverse collection:
>>> a1.user = None >>> u1.addresses []
The manipulation of the .addresses collection and the .user attribute occurs entirely in Python without any interaction with the SQL database. Without this behavior, the proper state would be apparent on both sides once the data has been flushed to the database, and later reloaded after a commit or expiration operation occurs. The backref/back_populates behavior has the advantage that common bidirectional operations can reflect the correct state without requiring a database round trip.
Remember, when the backref keyword is used on a single relationship, it’s exactly the same as if the above two relationships were created inpidually using back_populates on each.
mysql操作
检验一下我们上面的成果以及熟悉创建的mysql表的结构
地址表的结构
> SHOW CREATE TABLE addresses; +-----------+----------------+ | Table | Create Table | |-----------+----------------| | addresses | CREATE TABLE `addresses` ( `id` int(11) NOT NULL AUTO_INCREMENT, `email_address` varchar(50) NOT NULL, `user_id` int(11) DEFAULT NULL, PRIMARY KEY (`id`), KEY `user_id` (`user_id`), CONSTRAINT `addresses_ibfk_1` FOREIGN KEY (`user_id`) REFERENCES `users` (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8 | +-----------+----------------+ 1 row in set Time: 0.005s > DESC addresses; +---------------+-------------+--------+-------+-----------+----------------+ | Field | Type | Null | Key | Default | Extra | |---------------+-------------+--------+-------+-----------+----------------| | id | int(11) | NO | PRI | <null> | auto_increment | | email_address | varchar(50) | NO | | <null> | | | user_id | int(11) | YES | MUL | <null> | | +---------------+-------------+--------+-------+-----------+----------------+ 3 rows in set Time: 0.002s</null></null></null>
用户表的结构
> SHOW CREATE TABLE users; +---------+----------------+ | Table | Create Table | |---------+----------------| | users | CREATE TABLE `users` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(50) DEFAULT NULL, `fullname` varchar(50) DEFAULT NULL, `password` varchar(50) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=utf8 | +---------+----------------+ 1 row in set Time: 0.002s > DESC users; +----------+-------------+--------+-------+-----------+----------------+ | Field | Type | Null | Key | Default | Extra | |----------+-------------+--------+-------+-----------+----------------| | id | int(11) | NO | PRI | <null> | auto_increment | | name | varchar(50) | YES | | <null> | | | fullname | varchar(50) | YES | | <null> | | | password | varchar(50) | YES | | <null> | | +----------+-------------+--------+-------+-----------+----------------+ 4 rows in set Time: 0.003s</null></null></null></null>
详细数据
> SELECT * FROM addresses; +------+-----------------+-----------+ | id | email_address | user_id | |------+-----------------+-----------| | 3 | jack@google.com | 5 | | 4 | j25@yahoo.com | 5 | +------+-----------------+-----------+ 2 rows in set Time: 0.002s > SELECT * FROM users; +------+--------+----------------+------------+ | id | name | fullname | password | |------+--------+----------------+------------| | 1 | ed | Ed Jones | f8s7ccs | | 2 | wendy | Wendy Williams | foobar | | 3 | mary | Mary Contrary | xxg527 | | 4 | fred | Fred Flinstone | blah | | 5 | jack | Jack Bean | gjffdd | +------+--------+----------------+------------+ 5 rows in set Time: 0.003s
知乎live设计模型
from sqlalchemy import Column, String, Integer, create_engine, SmallInteger from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base DB_URI = 'sqlite:///user.db' Base = declarative_base() engine = create_engine(DB_URI) Base.metadata.bind = engine Session = sessionmaker(bind=engine) session = Session()
class User(Base): __tablename__ = 'live_user' id = Column(Integer, unique=True, primary_key=True, autoincrement=True) speaker_id = Column(String(40), index=True, unique=True) name = Column(String(40), index=True, nullable=False) gender = Column(SmallInteger, default=2) headline = Column(String(200)) avatar_url = Column(String(100), nullable=False) bio = Column(String(200)) description = Column(String()) @classmethod def add(cls, **kwargs): speaker_id = kwargs.get('speaker_id', None) if id is not None: r = session.query(cls).filter_by(speaker_id=speaker_id).first() if r: return r try: r = cls(**kwargs) session.add(r) session.commit() except: session.rollback() raise else: return r
Base.metadata.create_all()
接口分为2种:
http://www.php.cn/ (未结束)
http://www.php.cn/ (已结束)
elasticsearch-dsl-py相比elasticsearch-py做了各种封装,DSL也支持用类代表一个doc_type(类似数据库中的Table),实现ORM的效果。我们就用它来写Live模型:
from elasticsearch_dsl import DocType, Date, Integer, Text, Float, Boolean from elasticsearch_dsl.connections import connections from elasticsearch_dsl.query import SF, Q from config import SEARCH_FIELDS from .speaker import User, session connections.create_connection(hosts=['localhost'])
class Live(DocType): id = Integer() speaker_id = Integer() feedback_score = Float() # 评分 topic_names = Text(analyzer='ik_max_word') # 话题标签名字 seats_taken = Integer() # 参与人数 subject = Text(analyzer='ik_max_word') # 标题 amount = Float() # 价格(RMB) description = Text(analyzer='ik_max_word') status = Boolean() # public(True)/ended(False) starts_at = Date() outline = Text(analyzer='ik_max_word') # Live内容 speaker_message_count = Integer() tag_names = Text(analyzer='ik_max_word') liked_num = Integer() class Meta: index = 'live' @classmethod def add(cls, **kwargs): id = kwargs.pop('id', None) if id is None: return False live = cls(meta={'id': id}, **kwargs) live.save() return live
它允许我们用一种非常可维护的方法来组织字典:
In : from elasticsearch_dsl.query import Q In : Q('multi_match', subject='python').to_dict() Out: {'multi_match': {'subject': 'python'}}
In : from elasticsearch import Elasticsearch In : from elasticsearch_dsl import Search, Q In : s = Search(using=client, index='live') In : s = s.query('match', subject='python').query(~Q('match', description='量化')) In : s.execute() Out: <response:>]></response:>
上述例子表示从live这个索引(类似数据库中的Database)中找到subject字典包含python,但是description字段不包含量化的Live。
更多Python-SQLALchemy 相关文章请关注PHP中文网!

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Atom編輯器mac版下載
最受歡迎的的開源編輯器

Dreamweaver CS6
視覺化網頁開發工具

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能