首頁  >  文章  >  Java  >  java細粒度鎖

java細粒度鎖

伊谢尔伦
伊谢尔伦原創
2017-02-03 15:31:431599瀏覽

Java中的幾種鎖:synchronized,ReentrantLock,ReentrantReadWriteLock基本上可以滿足程式需求,但其粒度都太大,同一時刻只有一個執行緒能進入同步區塊,這對於某些高並發的場景並不適用。

下面來提供幾個更細的粒度鎖:

1. 分段鎖

借鑒concurrentHashMap的分段思想,先生成一定數量的鎖,具體使用的時候再根據key來返回對應的lock。這是幾個實作裡最簡單,效能最高,也是最終被採用的鎖策略,程式碼如下:

/**
 * 分段锁,系统提供一定数量的原始锁,根据传入对象的哈希值获取对应的锁并加锁
 * 注意:要锁的对象的哈希值如果发生改变,有可能导致锁无法成功释放!!!
 */
public class SegmentLock<T> {
    private Integer segments = 16;//默认分段数量
    private final HashMap<Integer, ReentrantLock> lockMap = new HashMap<>();
 
    public SegmentLock() {
        init(null, false);
    }
 
    public SegmentLock(Integer counts, boolean fair) {
        init(counts, fair);
    }
 
    private void init(Integer counts, boolean fair) {
        if (counts != null) {
            segments = counts;
        }
        for (int i = 0; i < segments; i++) {
            lockMap.put(i, new ReentrantLock(fair));
        }
    }
 
    public void lock(T key) {
        ReentrantLock lock = lockMap.get(key.hashCode() % segments);
        lock.lock();
    }
 
    public void unlock(T key) {
        ReentrantLock lock = lockMap.get(key.hashCode() % segments);
        lock.unlock();
    }
}

2. 哈希鎖

上述分段鎖的基礎上發展起來的第二種鎖策略,目的是實現真正意義上的細粒度鎖。每個哈希值不同的物件都能獲得自己獨立的鎖。在測試中,在被鎖定的程式碼執行速度快速的情況下,效率比分段鎖定慢 30% 左右。如果有長耗時操作,感覺表現應該會更好。程式碼如下:

public class HashLock<T> {
    private boolean isFair = false;
    private final SegmentLock<T> segmentLock = new SegmentLock<>();//分段锁
    private final ConcurrentHashMap<T, LockInfo> lockMap = new ConcurrentHashMap<>();
 
    public HashLock() {
    }
 
    public HashLock(boolean fair) {
        isFair = fair;
    }
 
    public void lock(T key) {
        LockInfo lockInfo;
        segmentLock.lock(key);
        try {
            lockInfo = lockMap.get(key);
            if (lockInfo == null) {
                lockInfo = new LockInfo(isFair);
                lockMap.put(key, lockInfo);
            } else {
                lockInfo.count.incrementAndGet();
            }
        } finally {
            segmentLock.unlock(key);
        }
        lockInfo.lock.lock();
    }
 
    public void unlock(T key) {
        LockInfo lockInfo = lockMap.get(key);
        if (lockInfo.count.get() == 1) {
            segmentLock.lock(key);
            try {
                if (lockInfo.count.get() == 1) {
                    lockMap.remove(key);
                }
            } finally {
                segmentLock.unlock(key);
            }
        }
        lockInfo.count.decrementAndGet();
        lockInfo.unlock();
    }
 
    private static class LockInfo {
        public ReentrantLock lock;
        public AtomicInteger count = new AtomicInteger(1);
 
        private LockInfo(boolean fair) {
            this.lock = new ReentrantLock(fair);
        }
 
        public void lock() {
            this.lock.lock();
        }
 
        public void unlock() {
            this.lock.unlock();
        }
    }
}

3. 弱引用鎖

哈希鎖因為引入的分段鎖來保證鎖創建和銷毀的同步,總感覺有點瑕疵,所以寫了第三個鎖來尋求更好的性能和更細粒度的鎖。這個鎖的想法是藉助java的弱引用來創建鎖,把鎖的銷毀交給jvm的垃圾回收,來避免額外的消耗。

有點遺憾的是因為使用了ConcurrentHashMap作為鎖的容器,所以沒能真正意義上的擺脫分段鎖。這個鎖的效能比 HashLock 快10% 左右。鎖碼:

/**
 * 弱引用锁,为每个独立的哈希值提供独立的锁功能
 */
public class WeakHashLock<T> {
    private ConcurrentHashMap<T, WeakLockRef<T, ReentrantLock>> lockMap = new ConcurrentHashMap<>();
    private ReferenceQueue<ReentrantLock> queue = new ReferenceQueue<>();
 
    public ReentrantLock get(T key) {
        if (lockMap.size() > 1000) {
            clearEmptyRef();
        }
        WeakReference<ReentrantLock> lockRef = lockMap.get(key);
        ReentrantLock lock = (lockRef == null ? null : lockRef.get());
        while (lock == null) {
            lockMap.putIfAbsent(key, new WeakLockRef<>(new ReentrantLock(), queue, key));
            lockRef = lockMap.get(key);
            lock = (lockRef == null ? null : lockRef.get());
            if (lock != null) {
                return lock;
            }
            clearEmptyRef();
        }
        return lock;
    }
 
    @SuppressWarnings("unchecked")
    private void clearEmptyRef() {
        Reference<? extends ReentrantLock> ref;
        while ((ref = queue.poll()) != null) {
            WeakLockRef<T, ? extends ReentrantLock> weakLockRef = (WeakLockRef<T, ? extends ReentrantLock>) ref;
            lockMap.remove(weakLockRef.key);
        }
    }
 
    private static final class WeakLockRef<T, K> extends WeakReference<K> {
        final T key;
 
        private WeakLockRef(K referent, ReferenceQueue<? super K> q, T key) {
            super(referent, q);
            this.key = key;
        }
    }
}

4.基於KEY(主鍵)的互斥鎖

KeyLock是對所需處理的資料的KEY(主鍵)進行加鎖,只要是對不同key操作,其就可以並行處理,大幅提升了執行緒的平行度

KeyLock有以下幾個特性:

    1、細粒度,高並行性
 比ReentrantLock大,適用於處理耗時長、key範圍大的場景

public class KeyLock<K> {
	// 保存所有锁定的KEY及其信号量
	private final ConcurrentMap<K, Semaphore> map = new ConcurrentHashMap<K, Semaphore>();
	// 保存每个线程锁定的KEY及其锁定计数
	private final ThreadLocal<Map<K, LockInfo>> local = new ThreadLocal<Map<K, LockInfo>>() {
		@Override
		protected Map<K, LockInfo> initialValue() {
			return new HashMap<K, LockInfo>();
		}
	};

	/**
	 * 锁定key,其他等待此key的线程将进入等待,直到调用{@link #unlock(K)}
	 * 使用hashcode和equals来判断key是否相同,因此key必须实现{@link #hashCode()}和
	 * {@link #equals(Object)}方法
	 * 
	 * @param key
	 */
	public void lock(K key) {
		if (key == null)
			return;
		LockInfo info = local.get().get(key);
		if (info == null) {
			Semaphore current = new Semaphore(1);
			current.acquireUninterruptibly();
			Semaphore previous = map.put(key, current);
			if (previous != null)
				previous.acquireUninterruptibly();
			local.get().put(key, new LockInfo(current));
		} else {
			info.lockCount++;
		}
	}
	
	/**
	 * 释放key,唤醒其他等待此key的线程
	 * @param key
	 */
	public void unlock(K key) {
		if (key == null)
			return;
		LockInfo info = local.get().get(key);
		if (info != null && --info.lockCount == 0) {
			info.current.release();
			map.remove(key, info.current);
			local.get().remove(key);
		}
	}

	/**
	 * 锁定多个key
	 * 建议在调用此方法前先对keys进行排序,使用相同的锁定顺序,防止死锁发生
	 * @param keys
	 */
	public void lock(K[] keys) {
		if (keys == null)
			return;
		for (K key : keys) {
			lock(key);
		}
	}

	/**
	 * 释放多个key
	 * @param keys
	 */
	public void unlock(K[] keys) {
		if (keys == null)
			return;
		for (K key : keys) {
			unlock(key);
		}
	}

	private static class LockInfo {
		private final Semaphore current;
		private int lockCount;

		private LockInfo(Semaphore current) {
			this.current = current;
			this.lockCount = 1;
		}
	}
}

KeyLock使用範例:

private int[] accounts;  
private KeyLock<Integer> lock = new KeyLock<Integer>();  
  
public boolean transfer(int from, int to, int money) {  
    Integer[] keys = new Integer[] {from, to};  
    Arrays.sort(keys); //对多个key进行排序,保证锁定顺序防止死锁  
    lock.lock(keys);  
    try {  
        //处理不同的from和to的线程都可进入此同步块  
        if (accounts[from] < money)  
            return false;  
        accounts[from] -= money;  
        accounts[to] += money;  
        return true;  
    } finally {  
        lock.unlock(keys);  
    }  
}
測試程式碼如下:

//场景:多线程并发转账  
public class Test {  
    private final int[] account; // 账户数组,其索引为账户ID,内容为金额  
  
    public Test(int count, int money) {  
        account = new int[count];  
        Arrays.fill(account, money);  
    }  
  
    boolean transfer(int from, int to, int money) {  
        if (account[from] < money)  
            return false;  
        account[from] -= money;  
        try {  
            Thread.sleep(2);  
        } catch (Exception e) {  
        }  
        account[to] += money;  
        return true;  
    }  
      
    int getAmount() {  
        int result = 0;  
        for (int m : account)  
            result += m;  
        return result;  
    }  
  
    public static void main(String[] args) throws Exception {  
        int count = 100;        //账户个数  
        int money = 10000;      //账户初始金额  
        int threadNum = 8;      //转账线程数  
        int number = 10000;     //转账次数  
        int maxMoney = 1000;    //随机转账最大金额  
        Test test = new Test(count, money);  
          
        //不加锁  
//      Runner runner = test.new NonLockRunner(maxMoney, number);  
        //加synchronized锁  
//      Runner runner = test.new SynchronizedRunner(maxMoney, number);  
        //加ReentrantLock锁  
//      Runner runner = test.new ReentrantLockRunner(maxMoney, number);  
        //加KeyLock锁  
        Runner runner = test.new KeyLockRunner(maxMoney, number);  
          
        Thread[] threads = new Thread[threadNum];  
        for (int i = 0; i < threadNum; i++)  
            threads[i] = new Thread(runner, "thread-" + i);  
        long begin = System.currentTimeMillis();  
        for (Thread t : threads)  
            t.start();  
        for (Thread t : threads)  
            t.join();  
        long time = System.currentTimeMillis() - begin;  
        System.out.println("类型:" + runner.getClass().getSimpleName());  
        System.out.printf("耗时:%dms\n", time);  
        System.out.printf("初始总金额:%d\n", count * money);  
        System.out.printf("终止总金额:%d\n", test.getAmount());  
    }  
  
    // 转账任务  
    abstract class Runner implements Runnable {  
        final int maxMoney;  
        final int number;  
        private final Random random = new Random();  
        private final AtomicInteger count = new AtomicInteger();  
  
        Runner(int maxMoney, int number) {  
            this.maxMoney = maxMoney;  
            this.number = number;  
        }  
  
        @Override  
        public void run() {  
            while(count.getAndIncrement() < number) {  
                int from = random.nextInt(account.length);  
                int to;  
                while ((to = random.nextInt(account.length)) == from)  
                    ;  
                int money = random.nextInt(maxMoney);  
                doTransfer(from, to, money);  
            }  
        }  
  
        abstract void doTransfer(int from, int to, int money);  
    }  
  
    // 不加锁的转账  
    class NonLockRunner extends Runner {  
        NonLockRunner(int maxMoney, int number) {  
            super(maxMoney, number);  
        }  
  
        @Override  
        void doTransfer(int from, int to, int money) {  
            transfer(from, to, money);  
        }  
    }  
  
    // synchronized的转账  
    class SynchronizedRunner extends Runner {  
        SynchronizedRunner(int maxMoney, int number) {  
            super(maxMoney, number);  
        }  
  
        @Override  
        synchronized void doTransfer(int from, int to, int money) {  
            transfer(from, to, money);  
        }  
    }  
  
    // ReentrantLock的转账  
    class ReentrantLockRunner extends Runner {  
        private final ReentrantLock lock = new ReentrantLock();  
  
        ReentrantLockRunner(int maxMoney, int number) {  
            super(maxMoney, number);  
        }  
  
        @Override  
        void doTransfer(int from, int to, int money) {  
            lock.lock();  
            try {  
                transfer(from, to, money);  
            } finally {  
                lock.unlock();  
            }  
        }  
    }  
  
    // KeyLock的转账  
    class KeyLockRunner extends Runner {  
        private final KeyLock<Integer> lock = new KeyLock<Integer>();  
  
        KeyLockRunner(int maxMoney, int number) {  
            super(maxMoney, number);  
        }  
  
        @Override  
        void doTransfer(int from, int to, int money) {  
            Integer[] keys = new Integer[] {from, to};  
            Arrays.sort(keys);  
            lock.lock(keys);  
            try {  
                transfer(from, to, money);  
            } finally {  
                lock.unlock(keys);  
            }  
        }  
    }  
}

測試結果:

次):

       類型:NonLockRunner(未加鎖)

       耗時:2482ms

       耗時:2482ms

    (無法保證原子性)

       型態:SynchronizedRunner(加上synchronized鎖定)
       耗時: 20872ms
       初始總金額:1000000
       終止總金額:1000000

   耗時:21588ms
       初始總金額:1000000
       以終止者:1000000

    終止總金額:1000000

   
       耗時:2831ms
       初始總金額:1000000
       

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn