搜尋
首頁後端開發Python教學[Python]網路爬蟲(七):Python中的正規表示式教程

接下來準備用糗百做一個爬蟲的小例子。

但是在這之前,先詳細的整理一下Python中的正規表示式的相關內容。

正規表示式在Python爬蟲中的作用就像是老師點名時用的花名冊一樣,是必不可少的神兵利器。

以下內容轉自CNBLOG:http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html

整理時沒有註意,實在抱歉。

一、 正規表示式基礎

1.1.概念介紹

正規表示式是用來處理字串的強大工具,它並不是Python的一部分。

其他程式語言中也有正規表示式的概念,差異只在於不同的程式語言實作支援的語法數量不同。

它擁有自己獨特的語法以及一個獨立的處理引擎,在提供了正則表達式的語言裡,正則表達式的語法都是一樣的。

下圖展示了使用正規表示式進行匹配的流程:

[Python]網路爬蟲(七):Python中的正規表示式教程


正則表達式的大致匹配過程是:

1.依次拿出表達式和文本中的字符比較,表達式和文本中的字符比較,表達式和文本中的字符比較,表達式2.如果每個字元都能匹配,則匹配成功;一旦有匹配不成功的字元則匹配失敗。

3.如果表達式中有量詞或邊界,這個過程會稍微有一些不同。

下圖列出了Python支援的正規表示式元字元和語法:   

[Python]網路爬蟲(七):Python中的正規表示式教程1.2. 數量詞的貪婪模式與非貪婪模式


字串。

貪婪模式,總是嘗試匹配盡可能多的字符;

非貪婪模式則相反,總是嘗試匹配盡可能少的字符。

Python裡數量詞預設是貪婪的。


例如:正規表示式"ab*"如果用於尋找"abbbc",將找到"abbb"。

而如果使用非貪婪的數量詞"ab*?",將找到"a"。


1.3. 反斜線的問題


與大多數程式語言相同,正則表達式裡使用""作為轉義字符,這就可能造成反斜線困擾。

假如你需要匹配文字中的字元"",那麼使用程式語言表示的正規表示式裡將需要4個反斜線"\\":

第一個和第三個用於在程式語言裡將第二個和第四個轉義成反斜杠,

轉換成兩個反斜杠\後再在正則表達式裡轉義成一個反斜杠用來匹配反斜杠。

這樣顯然是非常麻煩的。


Python裡的原生字串很好地解決了這個問題,這個例子中的正規表示式可以使用r"\"表示。

同樣,匹配一個數字的"\d"可以寫成r"d"。

有了原生字串,媽媽再也不用擔心我的反斜線問題~



二、 介紹re模組


2.1. 二、 介紹re模組

2.1. 的支持。

使用re的一般步驟是:

Step1:先將正規表示式的字串形式編譯為Pattern實例。

Step2:然後使用Pattern實例處理文字並獲得匹配結果(一個Match實例)。

Step3:最後使用Match實例獲得信息,進行其他的操作。

我們新建一個re01.py來試驗一下re的應用:

# -*- coding: utf-8 -*-  
#一个简单的re实例,匹配字符串中的hello字符串  
  
#导入re模块  
import re  
   
# 将正则表达式编译成Pattern对象,注意hello前面的r的意思是“原生字符串”  
pattern = re.compile(r'hello')  
   
# 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None  
match1 = pattern.match('hello world!')  
match2 = pattern.match('helloo world!')  
match3 = pattern.match('helllo world!')  
  
#如果match1匹配成功  
if match1:  
    # 使用Match获得分组信息  
    print match1.group()  
else:  
    print 'match1匹配失败!'  
  
  
#如果match2匹配成功  
if match2:  
    # 使用Match获得分组信息  
    print match2.group()  
else:  
    print 'match2匹配失败!'  
  
  
#如果match3匹配成功  
if match3:  
    # 使用Match获得分组信息  
    print match3.group()  
else:  
    print 'match3匹配失败!'

我們可以看到控制台輸出了匹配的三個結果:

[Python]網路爬蟲(七):Python中的正規表示式教程

下面來具體看看程式碼中的關鍵方法。

★ re.compile(strPattern[, flag]):

這個方法是Pattern類別的工廠方法,用於將字串形式的正規表示式編譯為Pattern物件。

第二個參數flag是匹配模式,取值可以使用位元或運算子'|'表示同時生效,例如re.I | re.M。

另外,你也可以在regex字串中指定模式,

例如re.compile('pattern', re.I | re.M)與re.compile('(?im)pattern')是等價的。

可選值有:

  •     re.I(全拼:IGNORECASE): 忽略大小写(括号内是完整写法,下同)

  •    re.M(全拼:MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)

  •     re.S(全拼:DOTALL): 点任意匹配模式,改变'.'的行为

  •     re.L(全拼:LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定

  •     re.U(全拼:UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性

  •     re.X(全拼:VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。


以下两个正则表达式是等价的:

# -*- coding: utf-8 -*-  
#两个等价的re匹配,匹配一个小数  
import re  
  
a = re.compile(r"""\d +  # the integral part 
                   \.    # the decimal point 
                   \d *  # some fractional digits""", re.X)  
  
b = re.compile(r"\d+\.\d*")  
  
match11 = a.match('3.1415')  
match12 = a.match('33')  
match21 = b.match('3.1415')  
match22 = b.match('33')   
  
if match11:  
    # 使用Match获得分组信息  
    print match11.group()  
else:  
    print u'match11不是小数'  
      
if match12:  
    # 使用Match获得分组信息  
    print match12.group()  
else:  
    print u'match12不是小数'  
      
if match21:  
    # 使用Match获得分组信息  
    print match21.group()  
else:  
    print u'match21不是小数'  
  
if match22:  
    # 使用Match获得分组信息  
    print match22.group()  
else:  
    print u'match22不是小数'

re提供了众多模块方法用于完成正则表达式的功能。


这些方法可以使用Pattern实例的相应方法替代,唯一的好处是少写一行re.compile()代码,

但同时也无法复用编译后的Pattern对象。

这些方法将在Pattern类的实例方法部分一起介绍。

如一开始的hello实例可以简写为:

# -*- coding: utf-8 -*-  
#一个简单的re实例,匹配字符串中的hello字符串  
import re  
  
m = re.match(r'hello', 'hello world!')  
print m.group()

re模块还提供了一个方法escape(string),用于将string中的正则表达式元字符如*/+/?等之前加上转义符再返回


2.2. Match

Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性:

string: 匹配时使用的文本。

re: 匹配时使用的Pattern对象。

pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。

endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。

lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。

lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。

方法:

group([group1, …]):
获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。

groups([default]): 
以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。

groupdict([default]):
返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。

start([group]): 
返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。

end([group]):
返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。

span([group]):
返回(start(group), end(group))。

expand(template): 
将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符'0',只能使用\g0。

下面来用一个py实例输出所有的内容加深理解:

# -*- coding: utf-8 -*-  
#一个简单的match实例  
  
import re  
# 匹配如下内容:单词+空格+单词+任意字符  
m = re.match(r&#39;(\w+) (\w+)(?P<sign>.*)&#39;, &#39;hello world!&#39;)  
  
print "m.string:", m.string  
print "m.re:", m.re  
print "m.pos:", m.pos  
print "m.endpos:", m.endpos  
print "m.lastindex:", m.lastindex  
print "m.lastgroup:", m.lastgroup  
  
print "m.group():", m.group()  
print "m.group(1,2):", m.group(1, 2)  
print "m.groups():", m.groups()  
print "m.groupdict():", m.groupdict()  
print "m.start(2):", m.start(2)  
print "m.end(2):", m.end(2)  
print "m.span(2):", m.span(2)  
print r"m.expand(r&#39;\g<2> \g<1>\g<3>&#39;):", m.expand(r&#39;\2 \1\3&#39;)  
   
### output ###  
# m.string: hello world!  
# m.re: <_sre.SRE_Pattern object at 0x016E1A38>  
# m.pos: 0  
# m.endpos: 12  
# m.lastindex: 3  
# m.lastgroup: sign  
# m.group(1,2): (&#39;hello&#39;, &#39;world&#39;)  
# m.groups(): (&#39;hello&#39;, &#39;world&#39;, &#39;!&#39;)  
# m.groupdict(): {&#39;sign&#39;: &#39;!&#39;}  
# m.start(2): 6  
# m.end(2): 11  
# m.span(2): (6, 11)  
# m.expand(r&#39;\2 \1\3&#39;): world hello!

2.3. Pattern

Pattern对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。

Pattern不能直接实例化,必须使用re.compile()进行构造,也就是re.compile()返回的对象。

Pattern提供了几个可读属性用于获取表达式的相关信息:

pattern: 编译时用的表达式字符串。

flags: 编译时用的匹配模式。数字形式。

groups: 表达式中分组的数量。

groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。

可以用下面这个例子查看pattern的属性:

# -*- coding: utf-8 -*-  
#一个简单的pattern实例  
  
import re  
p = re.compile(r&#39;(\w+) (\w+)(?P<sign>.*)&#39;, re.DOTALL)  
   
print "p.pattern:", p.pattern  
print "p.flags:", p.flags  
print "p.groups:", p.groups  
print "p.groupindex:", p.groupindex  
   
### output ###  
# p.pattern: (\w+) (\w+)(?P<sign>.*)  
# p.flags: 16  
# p.groups: 3  
# p.groupindex: {&#39;sign&#39;: 3}
下面重点介绍一下pattern的实例方法及其使用。
1.match
match(string[, pos[, endpos]]) | re.match(pattern, string[, flags]):
这个方法将从string的pos下标处起尝试匹配pattern;
如果pattern结束时仍可匹配,则返回一个Match对象;
如果匹配过程中pattern无法匹配,或者匹配未结束就已到达endpos,则返回None。
pos和endpos的默认值分别为0和len(string);
re.match()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
注意:这个方法并不是完全匹配。
当pattern结束时若string还有剩余字符,仍然视为成功。
想要完全匹配,可以在表达式末尾加上边界匹配符&#39;$&#39;。
下面来看一个Match的简单案例:
# encoding: UTF-8  
import re  
   
# 将正则表达式编译成Pattern对象  
pattern = re.compile(r&#39;hello&#39;)  
   
# 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None  
match = pattern.match(&#39;hello world!&#39;)  
   
if match:  
    # 使用Match获得分组信息  
    print match.group()  
   
### 输出 ###  
# hello

2.search
search(string[, pos[, endpos]]) | re.search(pattern, string[, flags]): 
这个方法用于查找字符串中可以匹配成功的子串。

从string的pos下标处起尝试匹配pattern,

如果pattern结束时仍可匹配,则返回一个Match对象;

若无法匹配,则将pos加1后重新尝试匹配;

直到pos=endpos时仍无法匹配则返回None。

pos和endpos的默认值分别为0和len(string));

re.search()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。

那么它和match有什么区别呢?

match()函数只检测re是不是在string的开始位置匹配,

search()会扫描整个string查找匹配,


match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回none
例如:
print(re.match(‘super’, ‘superstition’).span())

会返回(0, 5)

print(re.match(‘super’, ‘insuperable’))

则返回None

search()会扫描整个字符串并返回第一个成功的匹配
例如:

print(re.search(‘super’, ‘superstition’).span())

返回(0, 5)
print(re.search(‘super’, ‘insuperable’).span())

返回(2, 7)

看一个search的实例:

# -*- coding: utf-8 -*-  
#一个简单的search实例  
  
import re  
   
# 将正则表达式编译成Pattern对象  
pattern = re.compile(r&#39;world&#39;)  
   
# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None  
# 这个例子中使用match()无法成功匹配  
match = pattern.search(&#39;hello world!&#39;)  
   
if match:  
    # 使用Match获得分组信息  
    print match.group()  
   
### 输出 ###  
# world

3.split

split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]):
按照能够匹配的子串将string分割后返回列表。

maxsplit用于指定最大分割次数,不指定将全部分割。

import re  
   
p = re.compile(r&#39;\d+&#39;)  
print p.split(&#39;one1two2three3four4&#39;)  
   
### output ###  
# [&#39;one&#39;, &#39;two&#39;, &#39;three&#39;, &#39;four&#39;, &#39;&#39;]

4.findall

findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]):
搜索string,以列表形式返回全部能匹配的子串。

import re  
   
p = re.compile(r&#39;\d+&#39;)  
print p.findall(&#39;one1two2three3four4&#39;)  
   
### output ###  
# [&#39;1&#39;, &#39;2&#39;, &#39;3&#39;, &#39;4&#39;]

5.finditer

finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]):
搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。

import re  
   
p = re.compile(r&#39;\d+&#39;)  
for m in p.finditer(&#39;one1two2three3four4&#39;):  
    print m.group(),  
   
### output ###  
# 1 2 3 4

6.sub

sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]):
使用repl替换string中每一个匹配的子串后返回替换后的字符串。 
当repl是一个字符串时,可以使用\id或\g、\g引用分组,但不能使用编号0。 
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。 
count用于指定最多替换次数,不指定时全部替换。

import re  
   
p = re.compile(r&#39;(\w+) (\w+)&#39;)  
s = &#39;i say, hello world!&#39;  
   
print p.sub(r&#39;\2 \1&#39;, s)  
   
def func(m):  
    return m.group(1).title() + &#39; &#39; + m.group(2).title()  
   
print p.sub(func, s)  
   
### output ###  
# say i, world hello!  
# I Say, Hello World!

7.subn

subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]):
返回 (sub(repl, string[, count]), 替换次数)。

import re  
   
p = re.compile(r&#39;(\w+) (\w+)&#39;)  
s = &#39;i say, hello world!&#39;  
   
print p.subn(r&#39;\2 \1&#39;, s)  
   
def func(m):  
    return m.group(1).title() + &#39; &#39; + m.group(2).title()  
   
print p.subn(func, s)  
   
### output ###  
# (&#39;say i, world hello!&#39;, 2)  
# (&#39;I Say, Hello World!&#39;, 2)

至此,Python的正则表达式基本介绍就算是完成了^_^


以上就是[Python]网络爬虫(七):Python中的正则表达式教程的内容,更多相关内容请关注PHP中文网(www.php.cn)!



陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python:遊戲,Guis等Python:遊戲,Guis等Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Apr 02, 2025 am 07:12 AM

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。