一、 mutex互斥
同步:就是對資源的存取有序。互斥:就是任一時刻來說只有一個在執行;但是對於多線程的程式來說,訪問衝突的問題是很普遍的,解決的辦法是引入互斥鎖(Mutex,MutualExclusive Lock),獲得鎖的線程可以完成“讀-修改-寫”的操作,然後釋放鎖給其它線程,沒有獲得鎖的線程只能等待而不能訪問共享數據,這樣“讀-修改-寫”三步操作組成一個原子操作,要么都執行,要么都不執行,不會執行到中間被打斷,也不會在其它處理器上並行做這個操作。
互斥鎖用pthread_mutex_t類型的變數表示。用pthread_mutex_init初始化,用hread_destory()銷毀。成功回傳0,失敗回傳錯誤號。 。如果Mutex變數是靜態分配的(全域變數或static變數),也可以用巨集定義PTHREAD_MUTEX_INITIALIZER來初始化,相當於用pthread_mutex_init初始化並且attr參數為NULL
一個執行緒可以呼叫pthread_mutex_lock獲得Mutex,如果這時獲得另一個執行緒已經調pthread_mutex_lock獲得了該Mutex,則當前線程需要掛起等待,直到另一個線程調用pthread_mutex_unlock釋放Mutex,當前線程被喚醒,才能獲得該Mutex並繼續執行。意思是說如果有一個線程對mutex上了鎖,沒有開鎖,另外一個線程想獲得mutex,就得掛機等待,直到上鎖的線程開了鎖釋放開mutex之後,該線程被喚醒,才能獲得mutex.
如果一個線程既想獲得鎖,又不想掛起等待,可以調用pthread_mutex_trylock,如果Mutex已經被另一個線程獲得,這個函數會失敗返回EBUSY,而不會使線程掛起等待。
1 #include<stdio.h> 2 #include<stdlib.h> 3 #include<pthread.h> 4 static int g_count=0; 5 void * addWrite(void * arg) 6 { 7 int count=0; 8 int value=0; 9 while(count++ <5000) 10 { 11 value=g_count; 12 printf("g_count is %d\n",g_count); 13 g_count=value+1; 14 } 15 } 16 int main() 17 { 18 pthread_t id1; 19 pthread_t id2; 20 int ret=pthread_create(&id1,NULL,addWrite,NULL); 21 int res=pthread_create(&id2,NULL,addWrite,NULL); 22 pthread_join(id1,NULL); 23 pthread_join(id2,NULL);
我們創建兩個線程,各自把g_count增加5000次,正常情況下最後counter應該等於10000,但事實上每次運行該程式的結果都不一樣,有時候數到5000多,有時數到6000多但是加上鎖之後(在)第五行加上pthread_mutex_init 如下圖
結果:
加上鎖之後,就輸出10000
二、lock和unlock的實現原理
為了實現互斥鎖操作,大多數體系結構都提供了swap或exchange指令,該指令的作用是把寄存器和內存單元的數據相交換,由於只有一條指令,保證了原子性,即使是多處理器平台,訪問記憶體的匯流排週期也有先後,一個處理器上的交換指令執行時另一個處理器的交換指令只能等待匯流排週期。如下圖的偽代碼所示。 unlock中的釋放鎖定操作同樣只用一條指令實現,以保證它的原子性。
三、死鎖
・一般情況下,如果同一個線程先後兩次調用lock,在第二次調用時,由於鎖已經被佔用,該線程會掛起等待別的線程釋放鎖,然而鎖正是被自己佔用著的,該線程又被掛起而沒有機會釋放鎖,因此就永遠處於掛起等待狀態了,這叫做死鎖(Deadlock)。另一種典型的死鎖情形是這樣:線程A獲得了鎖1,線程B獲得了鎖2,這時線程A調用lock試圖獲得鎖2,結果是需要掛起等待線程B釋放鎖2,而這時線程B也調用lock試圖獲得鎖1,結果是需要掛起等待線程A釋放鎖1,於是線程A和B都永遠處於掛起狀態了。
死鎖形成的條件
①、互斥條件:一個資源每次只能被一個執行緒使用。
②、請求與保持條件:當一個行程因請求資源而被阻塞時,對已取得的資源保持不放。
③、不剝奪條件:進程已獲得的資源,在未使用完之前,不能強行剝奪。
④循環等待條件:若干進程之間形成一種頭尾相接的循環等待資源關係
如果涉及到更多的線程和更多的鎖,則更容易引起死鎖問題。寫程式時應該盡量避免同時獲得多個鎖,如果一定有必要這麼做,則有一個原則:如果所有執行緒在需要多個鎖時都按相同的先後順序(常見的是按Mutex變數的地址順序)獲得鎖,則不會出現死鎖。例如一個程式中用到鎖1、鎖2、鎖3,它們所對應的Mutex變數的位址是鎖1
以上就是Linux--線程的同步與互斥的內容,更多相關內容請關注PHP中文網(www.php.cn)!

PHPSession失效的原因包括配置錯誤、Cookie問題和Session過期。 1.配置錯誤:檢查並設置正確的session.save_path。 2.Cookie問題:確保Cookie設置正確。 3.Session過期:調整session.gc_maxlifetime值以延長會話時間。

在PHP中調試會話問題的方法包括:1.檢查會話是否正確啟動;2.驗證會話ID的傳遞;3.檢查會話數據的存儲和讀取;4.查看服務器配置。通過輸出會話ID和數據、查看會話文件內容等方法,可以有效診斷和解決會話相關的問題。

多次調用session_start()會導致警告信息和可能的數據覆蓋。 1)PHP會發出警告,提示session已啟動。 2)可能導致session數據意外覆蓋。 3)使用session_status()檢查session狀態,避免重複調用。

在PHP中配置會話生命週期可以通過設置session.gc_maxlifetime和session.cookie_lifetime來實現。 1)session.gc_maxlifetime控制服務器端會話數據的存活時間,2)session.cookie_lifetime控制客戶端cookie的生命週期,設置為0時cookie在瀏覽器關閉時過期。

使用數據庫存儲會話的主要優勢包括持久性、可擴展性和安全性。 1.持久性:即使服務器重啟,會話數據也能保持不變。 2.可擴展性:適用於分佈式系統,確保會話數據在多服務器間同步。 3.安全性:數據庫提供加密存儲,保護敏感信息。

在PHP中實現自定義會話處理可以通過實現SessionHandlerInterface接口來完成。具體步驟包括:1)創建實現SessionHandlerInterface的類,如CustomSessionHandler;2)重寫接口中的方法(如open,close,read,write,destroy,gc)來定義會話數據的生命週期和存儲方式;3)在PHP腳本中註冊自定義會話處理器並啟動會話。這樣可以將數據存儲在MySQL、Redis等介質中,提升性能、安全性和可擴展性。

SessionID是網絡應用程序中用來跟踪用戶會話狀態的機制。 1.它是一個隨機生成的字符串,用於在用戶與服務器之間的多次交互中保持用戶的身份信息。 2.服務器生成並通過cookie或URL參數發送給客戶端,幫助在用戶的多次請求中識別和關聯這些請求。 3.生成通常使用隨機算法保證唯一性和不可預測性。 4.在實際開發中,可以使用內存數據庫如Redis來存儲session數據,提升性能和安全性。

在無狀態環境如API中管理會話可以通過使用JWT或cookies來實現。 1.JWT適合無狀態和可擴展性,但大數據時體積大。 2.Cookies更傳統且易實現,但需謹慎配置以確保安全性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

記事本++7.3.1
好用且免費的程式碼編輯器

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

WebStorm Mac版
好用的JavaScript開發工具