一:遞歸實作
使用公式f[n]=f[n-1]+f[n-2],依序遞歸計算,遞歸結束條件是f[1]=1,f[2]=1。
二:陣列實作
空間複雜度和時間複雜度都是0(n),效率一般,比遞歸來得快。
三:vector
時間複雜度是0(n),時間複雜度是0(1),就是不知道vector的效率高不高,當然vector有自己的屬性會佔用資源。
四:queue
當然隊列比數組更適合實現斐波那契數列,時間複雜度和空間複雜度和vector
f(n)=f (n-1)+f(n-2),f(n)只和f(n-1)和f(n-2)有關,f(n)入隊列後,f(n-2)就可以出隊列了。
五:迭代實作
迭代實作是最有效率的,時間複雜度是0(n),空間複雜度是0(1)。
六:公式實現
百度的時候,發現原來斐波那契數列有公式的,所以可以使用公式來計算的。
由於double類型的精確度還不夠,所以程式算出來的結果會有誤差,如果把公式展開計算,得到的結果就是正確的。
完整的實作程式碼如下:
#include "iostream" #include "queue" #include "cmath" using namespace std; int fib1(int index) //递归实现 { if(index<1) { return -1; } if(index==1 || index==2) return 1; return fib1(index-1)+fib1(index-2); } int fib2(int index) //数组实现 { if(index<1) { return -1; } if(index<3) { return 1; } int *a=new int[index]; a[0]=a[1]=1; for(int i=2;i<index;i++) a[i]=a[i-1]+a[i-2]; int m=a[index-1]; delete a; //释放内存空间 return m; } int fib3(int index) //借用vector<int>实现 { if(index<1) { return -1; } vector<int> a(2,1); //创建一个含有2个元素都为1的向量 a.reserve(3); for(int i=2;i<index;i++) { a.insert(a.begin(),a.at(0)+a.at(1)); a.pop_back(); } return a.at(0); } int fib4(int index) //队列实现 { if(index<1) { return -1; } queue<int>q; q.push(1); q.push(1); for(int i=2;i<index;i++) { q.push(q.front()+q.back()); q.pop(); } return q.back(); } int fib5(int n) //迭代实现 { int i,a=1,b=1,c=1; if(n<1) { return -1; } for(i=2;i<n;i++) { c=a+b; //辗转相加法(类似于求最大公约数的辗转相除法) a=b; b=c; } return c; } int fib6(int n) { double gh5=sqrt((double)5); return (pow((1+gh5),n)-pow((1-gh5),n))/(pow((double)2,n)*gh5); } int main(void) { printf("%d\n",fib3(6)); system("pause"); return 0; }
七:二分矩陣方法
如上圖,Fibonacci 數列中任何一項可以用矩陣冪算出,而n次方是可以在logn的時間內算出的。
下面貼出程式碼:
void multiply(int c[2][2],int a[2][2],int b[2][2],int mod) { int tmp[4]; tmp[0]=a[0][0]*b[0][0]+a[0][1]*b[1][0]; tmp[1]=a[0][0]*b[0][1]+a[0][1]*b[1][1]; tmp[2]=a[1][0]*b[0][0]+a[1][1]*b[1][0]; tmp[3]=a[1][0]*b[0][1]+a[1][1]*b[1][1]; c[0][0]=tmp[0]%mod; c[0][1]=tmp[1]%mod; c[1][0]=tmp[2]%mod; c[1][1]=tmp[3]%mod; }//计算矩阵乘法,c=a*b int fibonacci(int n,int mod)//mod表示数字太大时需要模的数 { if(n==0)return 0; else if(n<=2)return 1;//这里表示第0项为0,第1,2项为1 int a[2][2]={{1,1},{1,0}}; int result[2][2]={{1,0},{0,1}};//初始化为单位矩阵 int s; n-=2; while(n>0) { if(n%2 == 1) multiply(result,result,a,mod); multiply(a,a,a,mod); n /= 2; }//二分法求矩阵幂 s=(result[0][0]+result[0][1])%mod;//结果 return s; }
附帶的再貼上二分法計算a的n次方函數。
int pow(int a,int n) { int ans=1; while(n) { if(n&1) ans*=a; a*=a; n>>=1; } return ans; }
更多求斐波那契(Fibonacci)數列通項的七種實現方法相關文章請關注PHP中文網!