自 Java 5 開始,java.util.concurrent.locks 套件中包含了一些鎖定的實現,因此你不用去實現自己的鎖定了。但是你仍然需要去了解怎麼使用這些鎖。
一個簡單的鎖
讓我們從 java 中的一個同步區塊開始:
public class Counter{ private int count = 0; public int inc(){ synchronized(this){ return ++count; } } }
可以看到在 inc()方法中有一個 synchronized(this)程式碼區塊。該程式碼區塊可以保證在同一時間只有一個執行緒可以執行 return ++count。雖然在 synchronized 的同步區塊中的程式碼可以更加複雜,但是++count 這種簡單的操作已經足以表達出線程同步的意思。
以下的Counter 類別以Lock 取代synchronized 達到了同樣的目的:
public class Counter{ private Lock lock = new Lock(); private int count = 0; public int inc(){ lock.lock(); int newCount = ++count; lock.unlock(); return newCount; } }
lock()方法會對Lock 實例物件進行加鎖,因此所有對該物件呼叫lock()方法的執行緒都會被阻塞,直到該Lock 物件的unlock()方法被呼叫。
這裡有一個 Lock 類別的簡單實作:
public class Counter{ public class Lock{ private boolean isLocked = false; public synchronized void lock() throws InterruptedException{ while(isLocked){ wait(); } isLocked = true; } public synchronized void unlock(){ isLocked = false; notify(); } }
注意其中的 while(isLocked)循環,它又被叫做「自旋鎖」。當 isLocked 為 true 時,呼叫 lock()的執行緒在 wait()呼叫上阻塞等待。為防止該執行緒沒有收到notify()呼叫也從wait()中傳回(也稱為虛假喚醒),這個執行緒會重新去檢查isLocked 條件以決定目前是否可以安全地繼續執行還是需要重新保持等待,而不是認為執行緒被喚醒了就可以安全地繼續執行了。如果 isLocked 為 false,目前執行緒會退出 while(isLocked)循環,並將 isLocked 設回 true,讓其它正在呼叫 lock()方法的執行緒能夠在 Lock 實例上加鎖。
當執行緒完成了臨界區(位於 lock()和 unlock()之間)中的程式碼,就會呼叫 unlock()。執行 unlock()會重新將 isLocked 設為 false,並且通知(喚醒)其中一個(若有的話)在 lock()方法中呼叫了 wait()函數而處於等待狀態的執行緒。
鎖的可重入性
Java 中的 synchronized 同步區塊是可重入的。這意味著如果一個java 執行緒進入了程式碼中的synchronized 同步區塊,並因此獲得了該同步區塊所使用的同步物件對應的管程上的鎖,那麼這個執行緒可以進入由同一個管程物件所同步的另一個java 程式碼塊。以下是一個例子:
public class Reentrant{ public synchronized outer(){ inner(); } public synchronized inner(){ //do something } }
注意 outer()和 inner()都被宣告為 synchronized,這在 Java 中和 synchronized(this)區塊等效。如果一個執行緒呼叫了 outer(),在 outer()裡呼叫 inner()就沒有什麼問題,因為這兩個方法(程式碼區塊)都由同一個管程物件(”this”)所同步。如果一個執行緒已經擁有了一個管程物件上的鎖,那麼它就有權存取被這個管程物件同步的所有程式碼區塊。這就是可重入。執行緒可以進入任何一個它已經擁有的鎖所同步著的程式碼區塊。
前面給出的鎖實現不是可重入的。如果我們像下面這樣重寫 Reentrant 類,當執行緒呼叫 outer()時,會在 inner()方法的 lock.lock()處阻塞住。
public class Reentrant2{ Lock lock = new Lock(); public outer(){ lock.lock(); inner(); lock.unlock(); } public synchronized inner(){ lock.lock(); //do something lock.unlock(); } }
呼叫 outer()的執行緒會先鎖住 Lock 實例,然後繼續呼叫 inner()。 inner()方法中該執行緒將再一次嘗試鎖定 Lock 實例,結果該動作會失敗(也就是說該執行緒會被阻塞),因為這個 Lock 實例已經在 outer()方法中被鎖定了。
兩次lock()之間沒有呼叫unlock(),第二次呼叫lock 就會阻塞,看過lock()實作後,會發現原因很明顯:
public class Lock{ boolean isLocked = false; public synchronized void lock() throws InterruptedException{ while(isLocked){ wait(); } isLocked = true; } ... }
一個執行緒是否被允許退出lock()方法是由while 循環(自旋鎖)中的條件決定的。目前的判斷條件是只有當 isLocked 為 false 時 lock 操作才被允許,而沒有考慮是哪個執行緒鎖住了它。
為了讓這個 Lock 類別具有可重入性,我們需要對它做一點小的改動:
public class Lock{ boolean isLocked = false; Thread lockedBy = null; int lockedCount = 0; public synchronized void lock() throws InterruptedException{ Thread callingThread = Thread.currentThread(); while(isLocked && lockedBy != callingThread){ wait(); } isLocked = true; lockedCount++; lockedBy = callingThread; } public synchronized void unlock(){ if(Thread.curentThread() == this.lockedBy){ lockedCount--; if(lockedCount == 0){ isLocked = false; notify(); } } } ... }
注意到現在的 while 循環(自旋鎖)也考慮到了已鎖住該 Lock 實例的線程。如果目前的鎖定物件沒有被加鎖(isLocked = false),或是目前呼叫執行緒已經對該Lock 實例加了鎖,那麼while 迴圈就不會被執行,而呼叫lock()的執行緒就可以退出該方法(譯者註:「被允許退出該方法」在目前語意下就是指不會呼叫wait()而導致阻塞)。
除此之外,我們需要記錄同一個執行緒重複對一個鎖定物件加鎖的次數。否則,一次 unblock()呼叫就會解除整個鎖,即使目前鎖已經被加鎖過多次。在 unlock()呼叫沒有達到對應 lock()呼叫的次數之前,我們不希望鎖被解除。
現在這個 Lock 類別就是可重入的了。
鎖的公平性
Java 的 synchronized 區塊並不保證嘗試進入它們的執行緒的順序。因此,如果多個執行緒不斷競爭存取相同的 synchronized 同步區塊,就存在一種風險,其中一個或多個執行緒永遠也無法獲得存取權 —— 也就是說存取權總是分配給了其它執行緒。這種情況被稱作線程飢餓。為了避免這種問題,鎖需要實現公平性。本文所展現的鎖在內部是用 synchronized 同步塊實現的,因此它們也不保證公平性。
在 finally 语句中调用 unlock()
如果用 Lock 来保护临界区,并且临界区有可能会抛出异常,那么在 finally 语句中调用 unlock()就显得非常重要了。这样可以保证这个锁对象可以被解锁以便其它线程能继续对其加锁。以下是一个示例:
lock.lock(); try{ //do critical section code, //which may throw exception } finally { lock.unlock(); }
这个简单的结构可以保证当临界区抛出异常时 Lock 对象可以被解锁。如果不是在 finally 语句中调用的 unlock(),当临界区抛出异常时,Lock 对象将永远停留在被锁住的状态,这会导致其它所有在该 Lock 对象上调用 lock()的线程一直阻塞。
以上就是关于 java 多线程锁的资料整理,后续继续补充相关资料,谢谢大家对本站的支持!
更多java 多线程-锁详解及示例代码相关文章请关注PHP中文网!

新興技術對Java的平台獨立性既有威脅也有增強。 1)雲計算和容器化技術如Docker增強了Java的平台獨立性,但需要優化以適應不同雲環境。 2)WebAssembly通過GraalVM編譯Java代碼,擴展了其平台獨立性,但需與其他語言競爭性能。

不同JVM實現都能提供平台獨立性,但表現略有不同。 1.OracleHotSpot和OpenJDKJVM在平台獨立性上表現相似,但OpenJDK可能需額外配置。 2.IBMJ9JVM在特定操作系統上表現優化。 3.GraalVM支持多語言,需額外配置。 4.AzulZingJVM需特定平台調整。

平台獨立性通過在多種操作系統上運行同一套代碼,降低開發成本和縮短開發時間。具體表現為:1.減少開發時間,只需維護一套代碼;2.降低維護成本,統一測試流程;3.快速迭代和團隊協作,簡化部署過程。

Java'splatformindependencefacilitatescodereusebyallowingbytecodetorunonanyplatformwithaJVM.1)Developerscanwritecodeonceforconsistentbehavioracrossplatforms.2)Maintenanceisreducedascodedoesn'tneedrewriting.3)Librariesandframeworkscanbesharedacrossproj

要解決Java應用程序中的平台特定問題,可以採取以下步驟:1.使用Java的System類查看系統屬性以了解運行環境。 2.利用File類或java.nio.file包處理文件路徑。 3.根據操作系統條件加載本地庫。 4.使用VisualVM或JProfiler優化跨平台性能。 5.通過Docker容器化確保測試環境與生產環境一致。 6.利用GitHubActions在多個平台上進行自動化測試。這些方法有助於有效地解決Java應用程序中的平台特定問題。

類加載器通過統一的類文件格式、動態加載、雙親委派模型和平台無關的字節碼,確保Java程序在不同平台上的一致性和兼容性,實現平台獨立性。

Java編譯器生成的代碼是平台無關的,但最終執行的代碼是平台特定的。 1.Java源代碼編譯成平台無關的字節碼。 2.JVM將字節碼轉換為特定平台的機器碼,確保跨平台運行但性能可能不同。

多線程在現代編程中重要,因為它能提高程序的響應性和資源利用率,並處理複雜的並發任務。 JVM通過線程映射、調度機制和同步鎖機制,在不同操作系統上確保多線程的一致性和高效性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。