搜尋
首頁後端開發Python教學python取得字母在字母表對應位置的幾種方法及性能對比較

python獲取字母在字母表對應位置的幾種方法及性能對比較

某些情況下要求我們查出字母在字母表中的順序,A = 1,B = 2 , C = 3, 以此類推,例如這題目 https://projecteuler.net/problem=42 其中一步解題步驟就是需要把字母換算成字母表中對應的順序。

取得字母在字母表對應位置的方法,最容易想到的實現的是:

使用str.index 或str.find方法:

In [137]: "ABC".index('B')
Out[137]: 1In [138]: "ABC".index('B')+1Out[138]:
 2#或者在前面填充一个字符,这样index就直接得到字母序号:
 In [139]: "_ABC".index("B")
Out[139]: 2

我還想到把字母表轉成list或者tuple再index,性能或會有提高? 或是把字母:數字 組成鍵值存到字典是個好辦法?

前兩天我還自己頓悟到了一個方法:

In [140]: ord('B')-64
Out[140]: 2

ord 和chr 都是python中的內置函數,ord可以把ASCII字符轉成對應在ASCII表中的序號,chr則是可以把序號轉成字串。

大寫字母中在表中是從65開始,減掉64剛好是大寫字母在表中的位置。 小寫字母是從97開始,減於96就是對應的字母表位置。

哪種方法可能在性能上更好?我寫了程式碼來測試一下:

az = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"_az = "_ABCDEFGHIJKLMNOPQRSTUVWXYZ"azlist = list(az)

azdict = dict(zip(az,range(1,27)))

text = az*1000000 #这个是测试数据#str.find和str.index的是一样的。这里就没必要写了。def azindexstr(text):
    for r in text:
        az.index(r)+1
        passdef _azindexstr(text):
    for r in text:
        _az.index(r)        passdef azindexlist(text):
    for r in text:
        azlist.index(r)        passdef azindexdict(text):
    for r in text:
        azdict.get(r)        passdef azindexdict2(text):
    for r in text:
        azdict[r]        passdef azord(text):
    for r in text:
        ord(r)-64
        passdef azand64(text):
    for r in text:
        ord(r)%64
        pass

把上面的程式碼複製貼上到ipython ,然後用魔法函數%timeit測試各個方法的效能。 ipython 是一個python互動解釋器,附帶各種很實用的功能,例如文字主要到的%timeit 功能。 請輸入pip install ipython安裝.

以下是我測試的結果資料:

In [147]: %timeit azindexstr(text)
1 loop, best of 3: 9.09 s per loop

In [148]: %timeit _azindexstr(text)
1 loop, best of 3: 8.1 s per loop

In [149]: %timeit azindexlist(text)
1 loop, best of 3: 17.1 s per loop

In [150]: %timeit azindexdict(text)
1 loop, best of 3: 4.54 s per loop

In [151]: %timeit azindexdict2(text)
1 loop, best of 3: 1.99 s per loop

In [152]: %timeit azord(text)
1 loop, best of 3: 2.94 s per loop

In [153]: %timeit azand64(text)
1 loop, best of 3: 4.56 s per loop

從結果中可見到list.index速度最慢,我很驚訝。另外如果list中數據很多,index會慢得很嚴重。 dict[r]的速度比dict.get(r)的速度快,但是如果是一個不存在的鍵dict[r]會報錯,而dict.get方法不會報錯,容錯性更好。

ord(r)-64的方法速度不錯,使用起來應該也是最方便,不用建構資料。


陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
了解差異:用於循環和python中的循環了解差異:用於循環和python中的循環May 16, 2025 am 12:17 AM

theDifferenceBetweewneaforoopandawhileLoopInpythonisthataThataThataThataThataThataThataNumberoFiterationSiskNownInAdvance,而leleawhileLoopisusedWhenaconDitionNeedneedneedneedNeedStobeCheckedStobeCheckedStobeCheckedStobeCheckedStobeceDrepeTysepectients.peatsiveSectlyStheStobeCeptellyWithnumberofiterations.1)forloopsareAceareIdealForitoringercortersence

Python循環控制:對於vs -a -a比較Python循環控制:對於vs -a -a比較May 16, 2025 am 12:16 AM

在Python中,for循環適用於已知迭代次數的情況,而while循環適合未知迭代次數且需要更多控制的情況。 1)for循環適用於遍歷序列,如列表、字符串等,代碼簡潔且Pythonic。 2)while循環在需要根據條件控制循環或等待用戶輸入時更合適,但需注意避免無限循環。 3)性能上,for循環略快,但差異通常不大。選擇合適的循環類型可以提高代碼的效率和可讀性。

如何在Python中結合兩個列表:5種簡單的方法如何在Python中結合兩個列表:5種簡單的方法May 16, 2025 am 12:16 AM

在Python中,可以通過五種方法合併列表:1)使用 運算符,簡單直觀,適用於小列表;2)使用extend()方法,直接修改原列表,適用於需要頻繁更新的列表;3)使用列表解析式,簡潔且可對元素進行操作;4)使用itertools.chain()函數,內存高效,適合大數據集;5)使用*運算符和zip()函數,適用於需要配對元素的場景。每種方法都有其特定用途和優缺點,選擇時應考慮項目需求和性能。

循環時循環:python語法,用例和示例循環時循環:python語法,用例和示例May 16, 2025 am 12:14 AM

foroopsare whenthenemberofiterationsisknown,而whileLoopsareUseduntilacTitionismet.1)ForloopSareIdealForeSequencesLikeLists,UsingSyntaxLike'forfruitinFruitinFruitinFruitIts:print(fruit)'。 2)'

python串聯列表列表python串聯列表列表May 16, 2025 am 12:08 AM

toConcateNateAlistofListsInpython,useextend,listComprehensions,itertools.Chain,orrecursiveFunctions.1)ExtendMethodStraightForwardButverBose.2)listComprechencomprechensionsareconconconciseandemandeconeandefforlargerdatasets.3)

Python中的合併列表:選擇正確的方法Python中的合併列表:選擇正確的方法May 14, 2025 am 12:11 AM

Tomergelistsinpython,YouCanusethe操作員,estextMethod,ListComprehension,Oritertools

如何在Python 3中加入兩個列表?如何在Python 3中加入兩個列表?May 14, 2025 am 12:09 AM

在Python3中,可以通過多種方法連接兩個列表:1)使用 運算符,適用於小列表,但對大列表效率低;2)使用extend方法,適用於大列表,內存效率高,但會修改原列表;3)使用*運算符,適用於合併多個列表,不修改原列表;4)使用itertools.chain,適用於大數據集,內存效率高。

Python串聯列表字符串Python串聯列表字符串May 14, 2025 am 12:08 AM

使用join()方法是Python中從列表連接字符串最有效的方法。 1)使用join()方法高效且易讀。 2)循環使用 運算符對大列表效率低。 3)列表推導式與join()結合適用於需要轉換的場景。 4)reduce()方法適用於其他類型歸約,但對字符串連接效率低。完整句子結束。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

北端:融合系統,解釋
1 個月前By尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
4 週前By尊渡假赌尊渡假赌尊渡假赌
<🎜>掩蓋:探險33-如何獲得完美的色度催化劑
2 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。