總結了一下常見集中排序的演算法
歸併排序
歸併排序也稱合併排序,是分治法的典型應用。分治思想是將每個問題分解成個小問題,將每個小問題解決,然後合併。
具體的歸併排序就是,將一組無序數依n/2遞歸分解成只有一個元素的子項,一個元素就是已經排好序的了。然後將這些有序的子元素進行合併。
合併的過程就是對兩個已經排好序的子序列,先選取兩個子序列中最小的元素進行比較,選取兩個元素中最小的那個子序列並將其從子序列中
去掉添加到最終的結果集中,直到兩個子序列歸併完成。
程式碼如下:
#!/usr/bin/python import sys def merge(nums, first, middle, last): ''''' merge ''' # 切片边界,左闭右开并且是了0为开始 lnums = nums[first:middle+1] rnums = nums[middle+1:last+1] lnums.append(sys.maxint) rnums.append(sys.maxint) l = 0 r = 0 for i in range(first, last+1): if lnums[l] < rnums[r]: nums[i] = lnums[l] l+=1 else: nums[i] = rnums[r] r+=1 def merge_sort(nums, first, last): ''''' merge sort merge_sort函数中传递的是下标,不是元素个数 ''' if first < last: middle = (first + last)/2 merge_sort(nums, first, middle) merge_sort(nums, middle+1, last) merge(nums, first, middle,last) if __name__ == '__main__': nums = [10,8,4,-1,2,6,7,3] print 'nums is:', nums merge_sort(nums, 0, 7) print 'merge sort:', nums
穩定,時間複雜度O(nlog n)
插入排序
碼如下:
#!/usr/bin/python import sys def insert_sort(a):要求在這個已經排好的資料序列中插入一個數, 但要求插入後此資料序列仍然有序。剛開始 一個元素明顯有序,然後插入一 元素明顯有序,然後插入一 元素到適當位置,然後插入第三個元素,依次類推 '''
a_len = len(a) if a_len = 0 and a[j] > key: a[j+1] = a[j] j-=1 a[j+1] = key return a if __name__ == '__main__': nums = [10,8,4,-1,2,6,7,3] print 'nums is:', nums insert_sort(nums) print 'insert sort:', nums
'''
import sys def select_sort(a):
交換兩個元素的值python中你可以這麼寫:a, b = b, a,其實這是因為賦值符號的左右兩邊都是元組
(這裡需要強調的是,在python中,元組其實是由逗號「,」來界定的,而不是括號)。
選擇排序
選擇排序(Selection sort)是一種簡單直覺的排序演算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到
排序序列的起始位置,然後,再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末端。以此類推,直到所
有元素均排序完畢。
a_len=len(a) for i in range(a_len):#在0-n-1上依次选择相应大小的元素 min_index = i#记录最小元素的下标 for j in range(i+1, a_len):#查找最小值 if(a[j]<a[min_index]): min_index=j if min_index != i:#找到最小元素进行交换 a[i],a[min_index] = a[min_index],a[i] if __name__ == '__main__': A = [10, -3, 5, 7, 1, 3, 7] print 'Before sort:',A select_sort(A) print 'After sort:',A
''''' 選擇排序
每一個從待排序的資料元素中選出最小(或最大)的一個元素,
順序放在列的最後,直到列數排序的資料元素排完。
選擇排序是不穩定的排序方法。
'''
def shell_sort(a): ''''' shell排序 ''' a_len=len(a) gap=a_len/2#增量 while gap>0: for i in range(a_len):#对同一个组进行选择排序 m=i j=i+1 while j<a_len: if a[j]<a[m]: m=j j+=gap#j增加gap if m!=i: a[m],a[i]=a[i],a[m] gap/=2 if __name__ == '__main__': A = [10, -3, 5, 7, 1, 3, 7] print 'Before sort:',A shell_sort(A) print 'After sort:',A
不穩定,且時間複雜度 O(n^2)
希爾排序
希爾排序,也稱遞減增量增量排序演算法、希爾排序演算法。此方法又稱縮小增量排序,因DL. Shell於1959年提出而得名。
先取一個小於n的整數d1作為第一個增量,把檔案的全部記錄分成d1個組。所有距離為d1的倍數的記錄放在同一個組別中。先在各組內排序; 然後,取第二個增量d2 不穩定,時間複雜度平均時間O(nlogn) 最差時間O(n^s)1 堆排序( Heap Sort Sort ) :在起始索引為0 的「堆」中: 節點i 的右子節點在位置2 * i + 24) 節點i 的父節點在位置floor( (i - 1) / 2 ) : 註floor 表示「取整」操作 堆的特性: 每個節點的鍵值一定總是大於(或小於)它的父節點 「最大堆」: 「堆」的根節點保存的是鍵值最大的節點。即「堆」中每個節點的鍵值總是大於它的子節點。 上移,下移: 當某節點的鍵值大於它的父節點時,這時我們就要進行「上移」操作,也就是我們把該節點移到它的父節點的位置, 而讓它的父節點到它的位置上,然後我們繼續判斷該節點,直到該節點不再大於它的父節點為止才停止「上移」。 現在我們再來了解一下「下移」操作。當我們把某節點的鍵值改小了之後,我們就要對其進行「下移」操作。 方法: 我們先建立一個最大堆(時間複雜度O(n)),然後每次我們只需要把根節點與最後一個位置的節點交換,然後把最後一個位置排除之外,然後把交換後根節點的堆進行調整(時間複雜度O(lgn) ),即對根節點進行「下移」操作即可。 堆排序的總的時間複雜度為O(nlgn). 程式碼如下: 不稳定,时间复杂度 O(nlog n) 快速排序 快速排序算法和合并排序算法一样,也是基于分治模式。对子数组A[p...r]快速排序的分治过程的三个步骤为: 分解:把数组A[p...r]分为A[p...q-1]与A[q+1...r]两部分,其中A[p...q-1]中的每个元素都小于等于A[q]而A[q+1...r]中的每个元素都大于等于A[q]; 解决:通过递归调用快速排序,对子数组A[p...q-1]和A[q+1...r]进行排序; 合并:因为两个子数组是就地排序的,所以不需要额外的操作。 对于划分partition 每一轮迭代的开始,x=A[r], 对于任何数组下标k,有: 1) 如果p≤k≤i,则A[k]≤x。 2) 如果i+1≤k≤j-1,则A[k]>x。 3) 如果k=r,则A[k]=x。 代码如下: 不稳定,时间复杂度 最理想 O(nlogn)最差时间O(n^2) 说下python中的序列: 列表、元组和字符串都是序列,但是序列是什么,它们为什么如此特别呢?序列的两个主要特点是索引操作符和切片操作符。索引操作符让我们可以从序列中抓取一个特定项目。切片操作符让我们能够获取序列的一个切片,即一部分序列,如:a = ['aa','bb','cc'], print a[0] 为索引操作,print a[0:2]为切片操作。#!/usr/bin env python
# 数组编号从 0开始
def left(i):
return 2*i +1
def right(i):
return 2*i+2
#保持最大堆性质 使以i为根的子树成为最大堆
def max_heapify(A, i, heap_size):
if heap_size <= 0:
return
l = left(i)
r = right(i)
largest = i # 选出子节点中较大的节点
if l A[largest]:
largest = l
if r A[largest]:
largest = r
if i != largest :#说明当前节点不是最大的,下移
A[i], A[largest] = A[largest], A[i] #交换
max_heapify(A, largest, heap_size)#继续追踪下移的点
#print A
# 建堆
def bulid_max_heap(A):
heap_size = len(A)
if heap_size >1:
node = heap_size/2 -1
while node >= 0:
max_heapify(A, node, heap_size)
node -=1
# 堆排序 下标从0开始
def heap_sort(A):
bulid_max_heap(A)
heap_size = len(A)
i = heap_size - 1
while i > 0 :
A[0],A[i] = A[i], A[0] # 堆中的最大值存入数组适当的位置,并且进行交换
heap_size -=1 # heap 大小 递减 1
i -= 1 # 存放堆中最大值的下标递减 1
max_heapify(A, 0, heap_size)
if __name__ == '__main__' :
A = [10, -3, 5, 7, 1, 3, 7]
print 'Before sort:',A
heap_sort(A)
print 'After sort:',A
#!/usr/bin/env python
# 快速排序
'''''
划分 使满足 以A[r]为基准对数组进行一个划分,比A[r]小的放在左边,
比A[r]大的放在右边
快速排序的分治partition过程有两种方法,
一种是上面所述的两个指针索引一前一后逐步向后扫描的方法,
另一种方法是两个指针从首位向中间扫描的方法。
'''
#p,r 是数组A的下标
def partition1(A, p ,r):
'''''
方法一,两个指针索引一前一后逐步向后扫描的方法
'''
x = A[r]
i = p-1
j = p
while j < r:
if A[j] < x:
i +=1
A[i], A[j] = A[j], A[i]
j += 1
A[i+1], A[r] = A[r], A[i+1]
return i+1
def partition2(A, p, r):
'''''
两个指针从首尾向中间扫描的方法
'''
i = p
j = r
x = A[p]
while i = x and i < j:
j -=1
A[i] = A[j]
while A[i]<=x and i < j:
i +=1
A[j] = A[i]
A[i] = x
return i
# quick sort
def quick_sort(A, p, r):
'''''
快速排序的最差时间复杂度为O(n2),平时时间复杂度为O(nlgn)
'''
if p < r:
q = partition2(A, p, r)
quick_sort(A, p, q-1)
quick_sort(A, q+1, r)
if __name__ == '__main__':
A = [5,-4,6,3,7,11,1,2]
print 'Before sort:',A
quick_sort(A, 0, 7)
print 'After sort:',A
#!/usr/bin/env python
# 快速排序
'''''
划分 使满足 以A[r]为基准对数组进行一个划分,比A[r]小的放在左边,
比A[r]大的放在右边
快速排序的分治partition过程有两种方法,
一种是上面所述的两个指针索引一前一后逐步向后扫描的方法,
另一种方法是两个指针从首位向中间扫描的方法。
'''
#p,r 是数组A的下标
def partition1(A, p ,r):
'''''
方法一,两个指针索引一前一后逐步向后扫描的方法
'''
x = A[r]
i = p-1
j = p
while j < r:
if A[j] < x:
i +=1
A[i], A[j] = A[j], A[i]
j += 1
A[i+1], A[r] = A[r], A[i+1]
return i+1
def partition2(A, p, r):
'''''
两个指针从首尾向中间扫描的方法
'''
i = p
j = r
x = A[p]
while i = x and i < j:
j -=1
A[i] = A[j]
while A[i]<=x and i < j:
i +=1
A[j] = A[i]
A[i] = x
return i
# quick sort
def quick_sort(A, p, r):
'''''
快速排序的最差时间复杂度为O(n2),平时时间复杂度为O(nlgn)
'''
if p < r:
q = partition2(A, p, r)
quick_sort(A, p, q-1)
quick_sort(A, q+1, r)
if __name__ == '__main__':
A = [5,-4,6,3,7,11,1,2]
print 'Before sort:',A
quick_sort(A, 0, 7)
print 'After sort:',A