搜尋
首頁後端開發Python教學開發中常遇到的Python陷阱與注意點

最近使用Python的過程中遇到了一些坑,例如用datetime.datetime.now()這個可變物件作為函數的預設參數,模組循環依賴等等。

在此記錄一下,方便以後查詢補充。

避免可變物件作為預設參數

在使用函數的過程中,經常涉及預設參數。在Python中,當使用可變物件作為預設參數的時候,就可能產生非預期的結果。

下面要看一個例子:

def append_item(a = 1, b = []):
    b.append(a)
    print b
     
append_item(a=1)
append_item(a=3)
append_item(a=5)


結果是:

[1]

[1, 3]

[1,13, 5] 可以看到後面兩次呼叫append_item函數的時候,函數參數b並沒有被初始化為[],而是保持了前面函數呼叫的值。

之所以得到這個結果,是因為在Python中,一個函數參數的預設值,只是在該函數定義的時候,被初始化一次。

下面看一個例子證明Python的這個特性:

class Test(object):  
    def __init__(self):  
        print("Init Test")  
           
def arg_init(a, b = Test()):  
    print(a)  
arg_init(1)  
arg_init(3)  
arg_init(5)


結果為:   


從這個例子的結果就可以看到,Test類別只是被實例化了一次,也就是說預設參數跟函數呼叫次數無關,只是在函數定義的時候被初始化一次。

可變預設參數的正確使用

對於可變的預設參數,我們可以使用下面的模式來避免上面的非預期結果: 

def append_item(a = 1, b = None):
    if b is None:
        b = []
    b.append(a)
    print b
     
append_item(a=1)
append_item(a=3)
append_item(a=5)

結果為:

[1]


]

[5]

  


Python中的作用域

Python的作用域解析順序為Local、Enclosing、Global、Built-in,也就是說Python。

看一個簡單的例子:

global_var = 0
def outer_func():
    outer_var = 1
     
    def inner_func():
        inner_var = 2
         
        print "global_var is :", global_var
        print "outer_var is :", outer_var
        print "inner_var is :", inner_var
         
    inner_func()
     
outer_func()

看一個簡單的例子:

num = 0
def var_func():
    num = 1
    print "num is :", num
     
var_func()


結果為:

 var global_var is  0:1


 var global_var is 

   


在Python中,關於作用域有一點要注意的是,在一個作用域裡面給一個變數賦值的時候,Python會認為這個變數是目前作用域的本地變數。

對於這一點也是比較容易理解的,對於下面程式碼var_func中給num變數進行了賦值,所以此處的num就是var_func作用域的本地變數。

num = 0
def var_func():
    print "num is :", num
    num = 1
     
var_func()

   


問題一

但是,當我們透過下面的方式使用變數的時候,就會產生問題了:

結果如下:

UnboundLocalError: local variable 'num' referenced before assignment

   

之所以產生這個錯誤,就是因為我們在var_func中給num變量進行了賦值,所以Python解釋器會認為num是var_func作用域的本地變量,但是當代碼執行到print " num is :", num語句的時候,num還是未定義。


問題二

上面的錯誤還是比較明顯的,還有一種比較隱蔽的錯誤形式如下:

   
li = [1, 2, 3]
def foo():
    li.append(4)
    print li
foo()
def bar():
    li +=[5]
    print li
bar()


UnboundLocalError: local variable 'li' referenced before assignment

1, 2, 3, 4]

li = [1, 2, 3]
def foo():
    li.append(4)
    print li
     
foo()
def bar():
    global li
    li +=[5]
    print li
     
bar()

   


在foo函數中,根據Python的作用域解析順序,該函數中使用了全局的li變數;但是在bar函數中,根據Python的作用域解析順序,該函數中使用了全局的li變數;但是在bar函數中,對順序變數進行了賦值,所以li會被當作bar作用域中的變數。


對於bar函數的這個問題,可以透過global來關鍵字。

class Student(object):
    books = ["Python", "JavaScript", "CSS"]
    def __init__(self, name, age):
        self.name = name
        self.age = age
    pass
     
wilber = Student("Wilber", 27)
print "%s is %d years old" %(wilber.name, wilber.age)
print Student.books
print wilber.books
wilber.books = ["HTML", "AngularJS"]
print Student.books
print wilber.books
del wilber.books
print Student.books
print wilber.books

類屬性隱藏


在Python中,有類別屬性和實例屬性。類別屬性是屬於類別本身的,被所有的類別實例共用。

類別屬性可以透過類別名稱存取和修改,也可以透過類別實例進行存取和修改。但是,當實例定義了跟類別同名的屬性後,類別屬性就被隱藏了。

看下面這個例子:   

Wilber is 27 years old
['Python', 'JavaScript', 'CSS']
['Python', 'JavaScript', 'CSS']
['Python', 'JavaScript', 'CSS']
['HTML', 'AngularJS']
['Python', 'JavaScript', 'CSS']
['Python', 'JavaScript', 'CSS']

程式碼的結果如下,起初wilber實例可以直接存取類別的books屬性,但是當實例wilber定義了名稱為books的實例屬性之後,wilber實例的books屬性就「隱藏」了類別的books屬性;當刪除了wilber實例的books屬性之後,wilber.books就又對應類別的books屬性了。

class A(object):
    count = 1
     
class B(A):
    pass    
     
class C(A):
    pass        
     
print A.count, B.count, C.count      
B.count = 2
print A.count, B.count, C.count      
A.count = 3
print A.count, B.count, C.count     
print B.__dict__
print C.__dict__

當在Python值使用繼承的時候,也要注意類別屬性的隱藏。對於一個類,可以透過類別的__dict__屬性來查看所有的類別屬性。

當透過類別名稱來存取一個類別屬性的時候,會先尋找類別的__dict__屬性,如果沒有找到類別屬性,就會繼續尋找父類別。但是,如果子類別定義了跟父類別同名的類別屬性後,子類別的類別屬性就會隱藏父類別的類別屬性。

看一個例子:   

1 1 1
1 2 1
3 2 3
{'count': 2, '__module__': '__main__', '__doc__': None}
{'__module__': '__main__', '__doc__': None}

結果如下,當類B定義了count這個類屬性之後,就會隱藏父類的count屬性

tpl = (1, 2, 3, [4, 5, 6])
print id(tpl)
print id(tpl[3])
tpl[3].extend([7, 8])
print tpl
print id(tpl)
print id(tpl[3])

tuple是“可變的”

在Python中,tuple是不可变对象,但是这里的不可变指的是tuple这个容器总的元素不可变(确切的说是元素的id),但是元素的值是可以改变的。

tpl = (1, 2, 3, [4, 5, 6])
print id(tpl)
print id(tpl[3])
tpl[3].extend([7, 8])
print tpl
print id(tpl)
print id(tpl[3])

代码结果如下,对于tpl对象,它的每个元素都是不可变的,但是tpl[3]是一个list对象。也就是说,对于这个tpl对象,id(tpl[3])是不可变的,但是tpl[3]确是可变的。

36764576
38639896
(1, 2, 3, [4, 5, 6, 7, 8])
36764576
38639896

Python的深浅拷贝

在对Python对象进行赋值的操作中,一定要注意对象的深浅拷贝,一不小心就可能踩坑了。

当使用下面的操作的时候,会产生浅拷贝的效果:

使用切片[:]操作

使用工厂函数(如list/dir/set)

使用copy模块中的copy()函数

使用copy模块里面的浅拷贝函数copy():

import copy
will = ["Will", 28, ["Python", "C#", "JavaScript"]]
wilber = copy.copy(will)
print id(will)
print will
print [id(ele) for ele in will]
print id(wilber)
print wilber
print [id(ele) for ele in wilber]
will[0] = "Wilber"
will[2].append("CSS")
print id(will)
print will
print [id(ele) for ele in will]
print id(wilber)
print wilber
print [id(ele) for ele in wilber]


使用copy模块里面的深拷贝函数deepcopy():

import copy
will = ["Will", 28, ["Python", "C#", "JavaScript"]]
wilber = copy.deepcopy(will)
print id(will)
print will
print [id(ele) for ele in will]
print id(wilber)
print wilber
print [id(ele) for ele in wilber]
will[0] = "Wilber"
will[2].append("CSS")
print id(will)
print will
print [id(ele) for ele in will]
print id(wilber)
print wilber
print [id(ele) for ele in wilber]


模块循环依赖

在Python中使用import导入模块的时候,有的时候会产生模块循环依赖,例如下面的例子,module_x模块和module_y模块相互依赖,运行module_y.py的时候就会产生错误。  

# module_x.py
import module_y
     
def inc_count():
    module_y.count += 1
    print module_y.count
     
     
# module_y.py
import module_x
count = 10
def run():
    module_x.inc_count()
     
run()

其实,在编码的过程中就应当避免循环依赖的情况,或者代码重构的过程中消除循环依赖。

当然,上面的问题也是可以解决的,常用的解决办法就是把引用关系搞清楚,让某个模块在真正需要的时候再导入(一般放到函数里面)。

对于上面的例子,就可以把module_x.py修改为如下形式,在函数内部导入module_y:

# module_x.py
def inc_count():
    import module_y
    module_y.count += 1
陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)