搜尋
首頁後端開發Python教學Python魔術方法-Magic Method

Python魔術方法-Magic Method

Nov 02, 2016 pm 03:04 PM
python

  在Python中,所有以“__”雙下劃線包起來的方法,都統稱為“Magic Method”,例如類的初始化方法 __init__ ,Python中所有的魔術方法均在官方文檔中有相應描述,但是對於官方的描述比較混亂而且組織比較鬆散。很難找到有一個例子。

構造和初始化

  每個Pythoner都知道一個最基本的魔術方法, __init__ 。透過此方法我們可以定義一個物件的初始操作。然而,當呼叫 x = SomeClass() 的時候, __init__ 並不是第一個被呼叫的方法。實際上,還有一個叫做__new__ 的方法,兩個共同構成了「建構函數」。

  __new__是用來建立類別並傳回這個類別的實例, 而__init__只是將傳入的參數來初始化該實例。

  在物件生命週期調用結束時,__del__ 方法會被調用,可以將__del__理解為「構析函數」。下面透過程式碼的看一看這三個方法:

from os.path import joinclass FileObject:
    '''给文件对象进行包装从而确认在删除时文件流关闭'''

    def __init__(self, filepath='~', filename='sample.txt'):
        #读写模式打开一个文件
        self.file = open(join(filepath, filename), 'r+')    def __del__(self):
        self.file.close()        del self.file

控制屬性存取

  許多從其他語言轉到Python的人會抱怨它缺乏類別的真正封裝。 (沒有辦法定義私有變量,然後定義公共的getter和setter)。 Python其實可以用魔術方法來完成封裝。我們來看看:

__getattr__(self, name):

  定義當使用者試圖取得一個不存在的屬性時的行為。這適用於對普通拼字錯誤的獲取和重定向,對獲取一些不建議的屬性時候給出警告(如果你願意你也可以計算並且給出一個值)或者處理一個 AttributeError 。只有當呼叫不存在的屬性的時候會被傳回。

__setattr__(self, name, value):

  與__getattr__(self, name)不同,__setattr__ 是一個封裝的解。無論屬性是否存在,它都允許你定義對屬性的賦值行為,以為這你可以對屬性的值進行個性自訂。實作__setattr__時要避免"無限遞迴"的錯誤。

__delattr__:

  與 __setattr__ 相同,但是功能是刪除一個屬性而不是設定他們。實現時也要防止無限遞歸現象發生。

__getattribute__(self, name):

  __getattribute__定義了你的屬性被訪問時的行為,相比較,__getattr__只有該屬性不存在時才會起作用。因此,在支援__getattribute__的Python版本,呼叫__getattr__前必定會呼叫 __getattribute__。 __getattribute__同樣要避免"無限遞歸"的錯誤。需要提醒的是,最好不要嘗試去實現__getattribute__,因為很少見到這種做法,而且很容易出bug。

  在進行屬性存取控制定義的時候很可能會很容易引起「無限遞歸」。如下面程式碼:

#  错误用法def __setattr__(self, name, value):
    self.name = value    # 每当属性被赋值的时候(如self.name = value), ``__setattr__()`` 会被调用,这样就造成了递归调用。
    # 这意味这会调用 ``self.__setattr__('name', value)`` ,每次方法会调用自己。这样会造成程序崩溃。#  正确用法def __setattr__(self, name, value):
    self.__dict__[name] = value  # 给类中的属性名分配值
    # 定制特有属性

Python的魔術方法很強大,但是用時卻需要慎之又慎,了解正確的使用方法非常重要。

創建自訂容器

  有很多方法可以讓你的Python類別行為向內建容器類型一樣,例如我們常用的list、dict、tuple、string等等。 Python的容器型別分為可變型別(如list、dict)和不可變型別(如string、tuple),可變容器和不可變容器的差別在於,不可變容器一旦賦值後,就不可對其中的某個元素進行修改。
  在講創建自訂容器之前,應該先了解下協定。這裡的協定跟其他語言中所謂的"介面"概念很像,它給你很多你必須定義的方法。然而在Python中的協議是很不正式的,不需要明確聲明實作。事實上,他們更像一種指南。

自訂容器的magic method

  下面细致了解下定义容器可能用到的魔术方法。首先,实现不可变容器的话,你只能定义 __len__ 和 __getitem__ (下面会讲更多)。可变容器协议则需要所有不可变容器的所有,另外还需要 __setitem__ 和 __delitem__ 。如果你希望你的对象是可迭代的话,你需要定义 __iter__ 会返回一个迭代器。迭代器必须遵循迭代器协议,需要有 __iter__(返回它本身) 和 next。

__len__(self):

  返回容器的长度。对于可变和不可变容器的协议,这都是其中的一部分。

__getitem__(self, key):

  定义当某一项被访问时,使用self[key]所产生的行为。这也是不可变容器和可变容器协议的一部分。如果键的类型错误将产生TypeError;如果key没有合适的值则产生KeyError。

__setitem__(self, key, value):

  当你执行self[key] = value时,调用的是该方法。

__delitem__(self, key):

  定义当一个项目被删除时的行为(比如 del self[key])。这只是可变容器协议中的一部分。当使用一个无效的键时应该抛出适当的异常。

__iter__(self):

  返回一个容器迭代器,很多情况下会返回迭代器,尤其是当内置的iter()方法被调用的时候,以及当使用for x in container:方式循环的时候。迭代器是它们本身的对象,它们必须定义返回self的__iter__方法。

__reversed__(self):

  实现当reversed()被调用时的行为。应该返回序列反转后的版本。仅当序列可以是有序的时候实现它,例如对于列表或者元组。

__contains__(self, item):

  定义了调用in和not in来测试成员是否存在的时候所产生的行为。你可能会问为什么这个不是序列协议的一部分?因为当__contains__没有被定义的时候,如果没有定义,那么Python会迭代容器中的元素来一个一个比较,从而决定返回True或者False。

__missing__(self, key):

  dict字典类型会有该方法,它定义了key如果在容器中找不到时触发的行为。比如d = {'a': 1}, 当你执行d[notexist]时,d.__missing__['notexist']就会被调用。

一个列子

  下面是书中的例子,用魔术方法来实现Haskell语言中的一个数据结构。

# -*- coding: utf-8 -*-class FunctionalList:
    ''' 实现了内置类型list的功能,并丰富了一些其他方法: head, tail, init, last, drop, take'''

    def __init__(self, values=None):
        if values is None:
            self.values = []        else:
            self.values = values    def __len__(self):
        return len(self.values)    def __getitem__(self, key):
        return self.values[key]    def __setitem__(self, key, value):
        self.values[key] = value    def __delitem__(self, key):
        del self.values[key]    def __iter__(self):
        return iter(self.values)    def __reversed__(self):
        return FunctionalList(reversed(self.values))    def append(self, value):
        self.values.append(value)    def head(self):
        # 获取第一个元素
        return self.values[0]    def tail(self):
        # 获取第一个元素之后的所有元素
        return self.values[1:]    def init(self):
        # 获取最后一个元素之前的所有元素
        return self.values[:-1]    def last(self):
        # 获取最后一个元素
        return self.values[-1]    def drop(self, n):
        # 获取所有元素,除了前N个
        return self.values[n:]    def take(self, n):
        # 获取前N个元素
        return self.values[:n]

  其实在collections模块中已经有了很多类似的实现,比如Counter、OrderedDict等等。

反射

  你也可以控制怎么使用内置在函数sisinstance()和issubclass()方法 反射定义魔术方法. 这个魔术方法是:

__instancecheck__(self, instance):

  检查一个实例是不是你定义的类的实例

__subclasscheck__(self, subclass):
  检查一个类是不是你定义的类的子类

  这些魔术方法的用例看起来很小, 并且确实非常实用. 它们反应了关于面向对象程序上一些重要的东西在Python上,并且总的来说Python: 总是一个简单的方法去找某些事情, 即使是没有必要的. 这些魔法方法可能看起来不是很有用, 但是一旦你需要它们,你会感到庆幸它们的存在。

可调用的对象

  你也许已经知道,在Python中,方法是最高级的对象。这意味着他们也可以被传递到方法中,就像其他对象一样。这是一个非常惊人的特性。

  在Python中,一个特殊的魔术方法可以让类的实例的行为表现的像函数一样,你可以调用它们,将一个函数当做一个参数传到另外一个函数中等等。这是一个非常强大的特性,其让Python编程更加舒适甜美。

__call__(self, [args...]):

  允许一个类的实例像函数一样被调用。实质上说,这意味着 x() 与 x.__call__() 是相同的。注意 __call__ 的参数可变。这意味着你可以定义 __call__ 为其他你想要的函数,无论有多少个参数。

  __call__ 在那些类的实例经常改变状态的时候会非常有效。调用这个实例是一种改变这个对象状态的直接和优雅的做法。用一个实例来表达最好不过了:

# -*- coding: UTF-8 -*-class Entity:
    """
    调用实体来改变实体的位置
    """def __init__(self, size, x, y):
    self.x, self.y = x, y
    self.size = sizedef __call__(self, x, y):
    """
    改变实体的位置
    """
    self.x, self.y = x, y

上下文管理

  with声明是从Python2.5开始引进的关键词。你应该遇过这样子的代码:

with open('foo.txt') as bar:
   # do something with bar

  在with声明的代码段中,我们可以做一些对象的开始操作和退出操作,还能对异常进行处理。这需要实现两个魔术方法: __enter__和 __exit__。

__enter__(self):

  定义了当使用with语句的时候,会话管理器在块被初始创建时要产生的行为。请注意,__enter__的返回值与with语句的目标或者as后的名字绑定。

__exit__(self, exception_type, exception_value, traceback):

  定义了当一个代码块被执行或者终止后,会话管理器应该做什么。它可以被用来处理异常、执行清理工作或做一些代码块执行完毕之后的日常工作。如果代码块执行成功,exception_type,exception_value,和traceback将会为None。否则,你可以选择处理这个异常或者是直接交给用户处理。如果你想处理这个异常的话,请确保__exit__在所有语句结束之后返回True。如果你想让异常被会话管理器处理的话,那么就让其产生该异常。

创建对象描述器

  描述器是通过获取、设置以及删除的时候被访问的类。当然也可以改变其它的对象。描述器并不是独立的。相反,它意味着被一个所有者类持有。当创建面向对象的数据库或者类,里面含有相互依赖的属相时,描述器将会非常有用。一种典型的使用方法是用不同的单位表示同一个数值,或者表示某个数据的附加属性。
  为了成为一个描述器,一个类必须至少有__get__,__set__,__delete__方法被实现:

__get__(self, instance, owner):

定义了当描述器的值被取得的时候的行为。instance是拥有该描述器对象的一个实例。owner是拥有者本身

__set__(self, instance, value):

定义了当描述器的值被改变的时候的行为。instance是拥有该描述器类的一个实例。value是要设置的值。

__delete__(self, instance):

定义了当描述器的值被删除的时候的行为。instance是拥有该描述器对象的一个实例。

  下面是一个描述器的实例:单位转换。

# -*- coding: UTF-8 -*-class Meter(object):
    """
    对于单位"米"的描述器
    """

    def __init__(self, value=0.0):
        self.value = float(value)    def __get__(self, instance, owner):
        return self.value    def __set__(self, instance, value):
        self.value = float(value)class Foot(object):
    """
    对于单位"英尺"的描述器
    """

    def __get__(self, instance, owner):
        return instance.meter * 3.2808

    def __set__(self, instance, value):
        instance.meter = float(value) / 3.2808class Distance(object):
    """
    用米和英寸来表示两个描述器之间的距离
    """
    meter = Meter(10)
    foot = Foot()

 使用时:

>>>d = Distance()
>>>print d.foot
>>>print d.meter
32.80810.0

复制

  有时候,尤其是当你在处理可变对象时,你可能想要复制一个对象,然后对其做出一些改变而不希望影响原来的对象。这就是Python的copy所发挥作用的地方。

__copy__(self):

  定义了当对你的类的实例调用copy.copy()时所产生的行为。copy.copy()返回了你的对象的一个浅拷贝——这意味着,当实例本身是一个新实例时,它的所有数据都被引用了——例如,当一个对象本身被复制了,它的数据仍然是被引用的(因此,对于浅拷贝中数据的更改仍然可能导致数据在原始对象的中的改变)。

__deepcopy__(self, memodict={}):

  定义了当对你的类的实例调用copy.deepcopy()时所产生的行为。copy.deepcopy()返回了你的对象的一个深拷贝——对象和其数据都被拷贝了。memodict是对之前被拷贝的对象的一个缓存——这优化了拷贝过程并且阻止了对递归数据结构拷贝时的无限递归。当你想要进行对一个单独的属性进行深拷贝时,调用copy.deepcopy(),并以memodict为第一个参数。

附录

用于比较的魔术方法

Python魔術方法-Magic Method

数值计算的魔术方法

单目运算符和函数

Python魔術方法-Magic Method

双目运算符或函数

Python魔術方法-Magic Method

增量运算

Python魔術方法-Magic Method

类型转换

Python魔術方法-Magic Method

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中