首頁 >类库下载 >其它類別庫 >floyd演算法學習筆記

floyd演算法學習筆記

高洛峰
高洛峰原創
2016-10-31 14:29:131741瀏覽

演算法思路

路徑矩陣

透過一個圖的權值矩陣求出它的每兩點間的最短路徑矩陣。從圖的帶權鄰接矩陣A=[a(i,j)] n×n開始,遞歸地進行n次更新,即由矩陣D(0)=A,按一個公式,構造出矩陣D(1) ;又用同樣地公式由D(1)構造出D(2),以此類推。最後又用同樣的公式由D(n-1)構造出矩陣D(n)。矩陣D(n)的i行j列元素便是i號頂點到j號頂點的最短路徑長度,稱D(n)為圖的距離矩陣,同時還可引入一個後繼節點矩陣path來記錄兩點間的最短路徑。

狀態轉移方程式

其狀態轉移方程式如下: map[i,j]:=min{map[i,k]+map[k,j],map[i,j]};map[i,j ]表示i到j的最短距離,K是窮舉i,j的斷點,map[n,n]初值應為0。

當然,如果這條路沒有通的話,還必須特殊處理,例如沒有map[i,k]這條路。

核心演算法

1,從任一條單邊路徑開始。所有兩點之間的距離是邊的權,如果兩點之間沒有邊相連,則權為無窮大。

2,對於每一對頂點 u 和 v,看看是否存在一個頂點 w 使得從 u 到 w 再到 v 比已知的路徑更短。如果是更新它。

把圖用鄰接矩陣G表示出來,如果從Vi到Vj有路​​可達,則G[i,j]=d,d表示該路的長度;否則G[i,j]=無窮大。定義一個矩陣D用來記錄所插入點的資訊,D[i,j]表示從Vi到Vj需要經過的點,初始化D[i,j]=j。把各個頂點插入圖中,比較插點後的距離與原來的距離,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值變小,則D[i,j]=k。在G中包含有兩點之間最短道路的信息,而在D中則包含了最短通路徑的信息。

 

 

時間複雜度與空間複雜度

時間複雜度:因為核心演算法是採用鬆弛法的三個for循環,因此時間複雜度為O(n^3)

空間複雜度:整個演算法空間消耗是一個n*n的矩陣,因此其空間複雜度為O(n^2)

 

C++程式碼

// floyd.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include"iostream"
#include"fstream"
#define maxlen 20
#define maximum 100
using namespace std;

typedef struct graph
{
 int vertex;
 int edge;
 int matrix[maxlen][maxlen];
};
int _tmain(int argc, _TCHAR* argv[])
{
 ofstream outwrite;
 outwrite.open("h.txt",ios::app|ios::out);
 outwrite<<"welcome to the graph world!\n";
 outwrite<<"the initial matrix is:\n";
 int vertexnumber;
 int edgenumber;
 int beginning,ending,weight;
 int mindistance[maxlen][maxlen];
 int interval[maxlen][maxlen];
 graph floydgraph;
 cout<<"welcome to the graph world!"<<endl;
 cout<<"input the number of the vertex: ";
 cin>>vertexnumber;
 cout<<"input the number of the edge: ";
 cin>>edgenumber;
 for (int i = 0; i < vertexnumber; i++)
 {
  for (int j = 0; j < vertexnumber; j++)
  {
   floydgraph.matrix[i][j]=maximum;
  }
 }
 for (int i = 0; i <edgenumber; i++)
 {
  cout<<"please input the beginning index: ";
  cin>>beginning;
  cout<<"please input the ending index: ";
  cin>>ending;
  cout<<"please input the distance of the two dot: ";
  cin>>weight;
  floydgraph.matrix[beginning][ending]=weight;
 }
 for (int i = 0; i <vertexnumber; i++)
 {
  for (int j = 0; j < vertexnumber; j++)
  {
   mindistance[i][j]=floydgraph.matrix[i][j];
   outwrite<<floydgraph.matrix[i][j]<<"\t";
   interval[i][j]=-1;
  }
  outwrite<<"\n";
 }
 for (int k = 0; k <vertexnumber; k++)
 {
  for (int i = 0; i < vertexnumber; i++)
  {
   for (int j = 0; j < vertexnumber; j++)
   {
    if(mindistance[i][j]>mindistance[i][k]+mindistance[k][j])
    {
     mindistance[i][j]=mindistance[i][k]+mindistance[k][j];
     interval[i][j]=k;
    }
   }
  }
 }
 outwrite<<"\n"<<"after the floyd transition, the matrix is: "<<"\n";
 for (int i = 0; i < vertexnumber; i++)
 {
  for (int j = 0; j < vertexnumber; j++)
  {
   cout<<"the mindistance between "<<i<<"  and  "<<j <<" is: ";
   cout<<mindistance[i][j]<<endl;
   cout<<"the two points pass through the point: "<<interval[i][j];
   cout<<endl;
   outwrite<<mindistance[i][j]<<"\t";
  }
  outwrite<<"\n";
 }
 outwrite<<"\n";
 outwrite<<"the points between the beginning point and the ending point is:"<<"\n";
 for (int i = 0; i < vertexnumber; i++)
 {
  for (int j = 0; j < vertexnumber; j++)
  {
   outwrite<<interval[i][j]<<"\t";
  }
  outwrite<<"\n";
 }
 outwrite.close();
 getchar();
 getchar();
 getchar();
 return 0;
}


陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

相關文章

看更多