搜尋
首頁後端開發Python教學python 序列化之JSON與pickle詳解

python 序列化之JSON與pickle詳解

Oct 29, 2016 am 10:17 AM
javascriptjsonpicklepython

JSON模組

JSON(JavaScript Object Notation) 是一種輕量級的資料交換格式。它是基於ECMAScript的一個子集。 JSON採用完全獨立於語言的文字格式,但也使用了類似C語言家族的習慣(包括C、C++、Java、JavaScript、Perl、Python等)。這些特性使JSON成為理想的資料交換語言。易於人閱讀和編寫,同時也易於機器解析和生成(一般用於提升網路傳輸速率)。
JSON在python中分別由list和dict組成。

一、python類型資料和JSON資料格式互相轉換

python 序列化之JSON與pickle詳解一、python類型資料與JSON資料格式互相轉換

一、python型別資料與JSON資料格式互相轉換

一、python型別資料與JSON資料格式互相轉換

一、python型別資料與JSON資料格式互相轉換

pthon 中str型別至JSON轉為unicodecode型,None轉為null,dict對應為

二、資料型別,None轉為null,dict對應類型資料編解碼

所謂簡單類型就是指上表中出現的python類型。

dumps:  將物件序列化

#coding:utf-8
import json

# 简单编码===========================================
print json.dumps(['foo', {'bar': ('baz', None, 1.0, 2)}])
# ["foo", {"bar": ["baz", null, 1.0, 2]}]

#字典排序
print json.dumps({"c": 0, "b": 0, "a": 0}, sort_keys=True)
# {"a": 0, "b": 0, "c": 0}

#自定义分隔符
print json.dumps([1,2,3,{'4': 5, '6': 7}], sort_keys=True, separators=(',',':'))
# [1,2,3,{"4":5,"6":7}]
print json.dumps([1,2,3,{'4': 5, '6': 7}], sort_keys=True, separators=('/','-'))
# [1/2/3/{"4"-5/"6"-7}]

#增加缩进,增强可读性,但缩进空格会使数据变大
print json.dumps({'4': 5, '6': 7}, sort_keys=True,indent=2, separators=(',', ': '))
# {
#   "4": 5,
#   "6": 7
# }


# 另一个比较有用的dumps参数是skipkeys,默认为False。
# dumps方法存储dict对象时,key必须是str类型,如果出现了其他类型的话,那么会产生TypeError异常,如果开启该参数,设为True的话,会忽略这个key。
data = {'a':1,(1,2):123}
print json.dumps(data,skipkeys=True)
#{"a": 1}

dump:  將物件序列化並儲存到檔案


#將物件序列化並儲存到檔案obj = ['foo', {'bar': ('baz', None , 1.0, 2)}]

with open(r"c:json.txt","w+") as f:

   json.dump(obj,f)

loads: 㜀將序列化字串序列化將序列化字串化

loads: 㜀

import json

obj = ['foo', {'bar': ('baz', None, 1.0, 2)}]
a= json.dumps(obj)
print json.loads(a)
# [u'foo', {u'bar': [u'baz', None, 1.0, 2]}]

 load:  將序列化字串從檔案讀取並反序列化

with open(r"c:json.txt","r") as f:    print json.load(f)

三、自訂複雜資料型別編解碼

例如我們碰到物件datetime,或是自訂的類別物件等json預設不支援的資料型別時,我們就需要自訂編解碼函數。有兩種方法來實作自訂編解碼。

1、方法一:自訂編解碼函數

#! /usr/bin/env python
# -*- coding:utf-8 -*-
# __author__ = "TKQ"
import datetime,json

dt = datetime.datetime.now()



def time2str(obj):
    #python to json
    if isinstance(obj, datetime.datetime):
        json_str = {"datetime":obj.strftime("%Y-%m-%d %X")}
        return json_str
    return obj

def str2time(json_obj):
    #json to python
    if "datetime" in json_obj:
        date_str,time_str = json_obj["datetime"].split(' ')
        date = [int(x) for x in date_str.split('-')]
        time = [int(x) for x in time_str.split(':')]
        dt = datetime.datetime(date[0],date[1], date[2], time[0],time[1], time[2])
        return dt
    return json_obj


a = json.dumps(dt,default=time2str)
print a
# {"datetime": "2016-10-27 17:38:31"}
print json.loads(a,object_hook=str2time)
# 2016-10-27 17:38:31

2、方法二:繼承JSONEncoder和JSONDecoder類,重寫相關方法

#! /usr/bin/env python
# -*- coding:utf-8 -*-
# __author__ = "TKQ"
import datetime,json

dt = datetime.datetime.now()
dd = [dt,[1,2,3]]

class MyEncoder(json.JSONEncoder):
    def default(self,obj):
        #python to json
        if isinstance(obj, datetime.datetime):
            json_str = {"datetime":obj.strftime("%Y-%m-%d %X")}
            return json_str
        return obj

class MyDecoder(json.JSONDecoder):
    def __init__(self):
        json.JSONDecoder.__init__(self, object_hook=self.str2time)

    def str2time(self,json_obj):
        #json to python
        if "datetime" in json_obj:
            date_str,time_str = json_obj["datetime"].split(' ')
            date = [int(x) for x in date_str.split('-')]
            time = [int(x) for x in time_str.split(':')]
            dt = datetime.datetime(date[0],date[1], date[2], time[0],time[1], time[2])
            return dt
        return json_obj


# a = json.dumps(dt,default=time2str)
a =MyEncoder().encode(dd)
print a
# [{"datetime": "2016-10-27 18:14:54"}, [1, 2, 3]]
print MyDecoder().decode(a)
# [datetime.datetime(2016, 10, 27, 18, 14, 54), [1, 2, 3]]

pickle模組

python的picklekle序列化。基本上功能使用和JSON模組沒有太大差別,方法也同樣是dumps/dump和loads/load。 cPickle是pickle模組的C語言編譯版本相對速度較快。

與JSON不同的是pickle不是用於多種語言間的資料傳輸,它僅作為python物件的持久化或python程式間進行互相傳輸物件的方法,因此它支援了python所有的資料類型。

pickle反序列化後的對象與原對像是等值的副本對象,類似與deepcopy。

dumps/dump序列化

from datetime import date

try:
    import cPickle as pickle    #python 2
except ImportError as e:
    import pickle   #python 3


src_dic = {"date":date.today(),"oth":([1,"a"],None,True,False),}
det_str = pickle.dumps(src_dic)
print det_str
# (dp1
# S'date'
# p2
# cdatetime
# date
# p3
# (S'\x07\xe0\n\x1b'
# tRp4
# sS'oth'
# p5
# ((lp6
# I1
# aS'a'
# aNI01
# I00
# tp7
# s.
with open(r"c:\pickle.txt","w") as f:
    pickle.dump(src_dic,f)

loads/load反序列化🎜
from datetime import date

try:
    import cPickle as pickle    #python 2
except ImportError as e:
    import pickle   #python 3


src_dic = {"date":date.today(),"oth":([1,"a"],None,True,False),}
det_str = pickle.dumps(src_dic)
with open(r"c:\pickle.txt","r") as f:
    print pickle.load(f)
# {'date': datetime.date(2016, 10, 27), 'oth': ([1, 'a'], None, True, False)}
🎜JSON和pickle模組的區別🎜🎜1、JSON只能處理基本資料類型。 pickle能處理所有Python的資料類型。 🎜🎜2、JSON用於各種語言之間的字元轉換。 pickle用於Python程式物件的持久化或Python程式間物件網路傳輸,但不同版本的Python序列化可能還有差異。 🎜🎜🎜🎜
陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
您如何切成python陣列?您如何切成python陣列?May 01, 2025 am 12:18 AM

Python列表切片的基本語法是list[start:stop:step]。 1.start是包含的第一個元素索引,2.stop是排除的第一個元素索引,3.step決定元素之間的步長。切片不僅用於提取數據,還可以修改和反轉列表。

在什麼情況下,列表的表現比數組表現更好?在什麼情況下,列表的表現比數組表現更好?May 01, 2025 am 12:06 AM

ListSoutPerformarRaysin:1)DynamicsizicsizingandFrequentInsertions/刪除,2)儲存的二聚體和3)MemoryFeliceFiceForceforseforsparsedata,butmayhaveslightperformancecostsinclentoperations。

如何將Python數組轉換為Python列表?如何將Python數組轉換為Python列表?May 01, 2025 am 12:05 AM

toConvertapythonarraytoalist,usEthelist()constructororageneratorexpression.1)intimpthearraymoduleandcreateanArray.2)USELIST(ARR)或[XFORXINARR] to ConconverTittoalist,請考慮performorefformanceandmemoryfformanceandmemoryfformienceforlargedAtasetset。

當Python中存在列表時,使用數組的目的是什麼?當Python中存在列表時,使用數組的目的是什麼?May 01, 2025 am 12:04 AM

choosearraysoverlistsinpythonforbetterperformanceandmemoryfliceSpecificScenarios.1)largenumericaldatasets:arraysreducememoryusage.2)績效 - 臨界雜貨:arraysoffersoffersOffersOffersOffersPoostSfoostSforsssfortasssfortaskslikeappensearch orearch.3)testessenforcety:arraysenforce:arraysenforc

說明如何通過列表和數組的元素迭代。說明如何通過列表和數組的元素迭代。May 01, 2025 am 12:01 AM

在Python中,可以使用for循環、enumerate和列表推導式遍歷列表;在Java中,可以使用傳統for循環和增強for循環遍歷數組。 1.Python列表遍歷方法包括:for循環、enumerate和列表推導式。 2.Java數組遍歷方法包括:傳統for循環和增強for循環。

什麼是Python Switch語句?什麼是Python Switch語句?Apr 30, 2025 pm 02:08 PM

本文討論了版本3.10中介紹的Python的新“匹配”語句,該語句與其他語言相同。它增強了代碼的可讀性,並為傳統的if-elif-el提供了性能優勢

Python中有什麼例外組?Python中有什麼例外組?Apr 30, 2025 pm 02:07 PM

Python 3.11中的異常組允許同時處理多個異常,從而改善了並發方案和復雜操作中的錯誤管理。

Python中的功能註釋是什麼?Python中的功能註釋是什麼?Apr 30, 2025 pm 02:06 PM

Python中的功能註釋將元數據添加到函數中,以進行類型檢查,文檔和IDE支持。它們增強了代碼的可讀性,維護,並且在API開發,數據科學和圖書館創建中至關重要。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器