搜尋
首頁後端開發Python教學使用 Python 計算 π 值
使用 Python 計算 π 值Oct 18, 2016 am 10:44 AM

π是一個無數人追隨的真正的神奇數字。我不是很清楚一個永遠重複的無理數的迷人之處。在我看來,我樂於計算π,也就是計算π的值。因為π是一個無理數,它是無限的。這就意味著任何對π的計算都只是個近似值。如果你計算100位,我可以計算101位並且更精確。到目前為止,有些人已經選拔出超級電腦來試圖計算最精確的π。一些極值包括 計算π的5億位。你甚至可以從網路上找到包含 π的一百億位元的文字檔案(注意啦!下載這個檔案可能得花一會兒時間,並且沒法用你平常使用的記事本應用程式打開。)。對我而言,如何用幾行簡單的Python來計算π才是我的興趣。

使用 Python 計算 π 值

你總是可以 使用 math.pi 變數的 。它被 包含在 標準庫中, 在你試圖自己 計算它之前,你應該去使用它 。 事實上 , 我們將 用它來計算 精度 。作為 開始, 讓我們來看 一個 非常直截了當的 計算Pi的 方法 。像往常一樣,我將使用Python 2.7,同樣的想法和程式碼可能應用於不同的版本。我們將要使用的大部分演算法來自 Pi WikiPedia page並加以實現。讓我們看看下面的程式碼:

importsys
importmath
   
defmain(argv):
   
    iflen(argv) !=1:
        sys.exit(&#39;Usage: calc_pi.py <n>&#39;)
   
    print&#39;\nComputing Pi v.01\n&#39;
       
    a=1.0
    b=1.0/math.sqrt(2)
    t=1.0/4.0
    p=1.0
           
    foriinrange(int(sys.argv[1])):
        at=(a+b)/2
        bt=math.sqrt(a*b)
        tt=t-p*(a-at)**2
        pt=2*p
           
        a=at;b=bt;t=tt;p=pt
           
    my_pi=(a+b)**2/(4*t)
    accuracy=100*(math.pi-my_pi)/my_pi
           
    print"Pi is approximately: "+str(my_pi)
    print"Accuracy with math.pi: "+str(accuracy)
       
if__name__=="__main__":
    main(sys.argv[1:])

這是一個非常簡單的腳本,你可以下載,運行,修改,和隨意分享給別人。你能夠看到類似下面的輸出結果:

  • 使用 Python 計算 π 值

  • 你會發現,儘管 n 大於4 ,我們逼近 Pi 精度卻沒有多大的提升。 我們可以猜到即使 n的值更大,同樣的事情(pi的逼近精度沒有提升)仍會發生。幸運的是,有不只一種方法來揭開這個謎。使用 Python Decimal (十進位)函式庫,我們可以就可以得到更精確的值來逼近Pi。讓我們來看看庫函數是如何使用的。這個簡化的版本,可以得到多於11位的數字 通常情況小Python 浮點數給出的精度。以下是Python Decimal 庫中的一個例子 :

  • 使用 Python 計算 π 值

  • 看到這些數字。不對! 我們輸入的只是 3.14,為什麼我們得到了一些垃圾(junk)? 這是記憶體垃圾(memory junk)。 在堅果殼,Python給你想要的十進制數,再加上一點額外的值。 只要精度小於垃圾號碼開始時,它不會影響任何計算只要精度小於前面的垃圾號碼(junk number)開始時。 您可以指定你想要多少位數的通過設定getcontext().prec 。我們試試。

很好。 現在讓我們 試著用這個 來 看看我們是否能 與我們以前的 程式碼 有更好的 逼近 。 現在, 我通常 是反對 使用「 from library import * 」 , 但在這種情況下, 它會 讓程式碼 看起來更漂亮 。

importsys
importmath
fromdecimalimport*
   
defmain(argv):
   
    iflen(argv) !=1:
        sys.exit(&#39;Usage: calc_pi.py <n>&#39;)
   
    print&#39;\nComputing Pi v.01\n&#39;
       
    a=Decimal(1.0)
    b=Decimal(1.0/math.sqrt(2))
    t=Decimal(1.0)/Decimal(4.0)
    p=Decimal(1.0)
           
    foriinrange(int(sys.argv[1])):
        at=Decimal((a+b)/2)
        bt=Decimal(math.sqrt(a*b))
        tt=Decimal(t-p*(a-at)**2)
        pt=Decimal(2*p)
           
        a=at;b=bt;t=tt;p=pt
           
    my_pi=(a+b)**2/(4*t)
    accuracy=100*(Decimal(math.pi)-my_pi)/my_pi
           
    print"Pi is approximately: "+str(my_pi)
    print"Accuracy with math.pi: "+str(accuracy)
       
if__name__=="__main__":
    main(sys.argv[1:])

輸出結果:

使用 Python 計算 π 值

好了。我們更準確了,但看起來似乎有些捨去。從n = 100和n = 1000,我們有相同的精度。現在怎麼辦?好吧,現在我們來求助於公式。到目前為止,我們計算Pi的方式是透過對幾部分加在一起。我從DAN 的關於 Calculating Pi 的文章中發現一些程式碼。他建議我們用以下3個公式:

Bailey–Borwein–Plouffe 公式

Bellard的公式

Chudnovsky 演算法

讓我們從Bailey–Borwein–Plouffe 公式開始。它看起來是這個樣子:

使用 Python 計算 π 值

在程式碼中我們可以這樣寫它:

import sys
import math
from decimal import *
   
def bbp(n):
    pi=Decimal(0)
    k=0
    while k < n:
        pi+=(Decimal(1)/(16**k))*((Decimal(4)/(8*k+1))-(Decimal(2)/(8*k+4))-(Decimal(1)/(8*k+5))-(Decimal(1)/(8*k+6)))
        k+=1
    return pi
   
def main(argv):
   
        if len(argv) !=2:
        sys.exit(&#39;Usage: BaileyBorweinPlouffe.py <prec> <n>&#39;)
           
    getcontext().prec=(int(sys.argv[1]))
    my_pi=bbp(int(sys.argv[2]))
    accuracy=100*(Decimal(math.pi)-my_pi)/my_pi
   
    print"Pi is approximately "+str(my_pi)
    print"Accuracy with math.pi: "+str(accuracy)
       
if __name__=="__main__":
    main(sys.argv[1:])

拋開「 包裝」的程式碼,BBP(N)的功能是你真正想要的。你給它越大的N和給 getcontext().prec 設定越大的值,你就會讓計算越精確。讓我們來看看一些程式碼結果:

使用 Python 計算 π 值

這有許多數字位。你可以看出,我們並沒有比以前更準確。所以我們需要前進到下一個公式,貝拉公式,希望能獲得更好的精確度。它看起來像這樣:

使用 Python 計算 π 值

我們將只改變我們的變換公式,其餘的程式碼將保持不變。點這裡下載Python實現的貝拉公式。讓我們來看看bellards(n):

def bellard(n):
   pi=Decimal(0)
   k=0
   while k < n:
       pi+=(Decimal(-1)**k/(1024**k))*( Decimal(256)/(10*k+1)+Decimal(1)/(10*k+9)-Decimal(64)/(10*k+3)-Decimal(32)/(4*k+1)-Decimal(4)/(10*k+5)-Decimal(4)/(10*k+7)-Decimal(1)/(4*k+3))
       k+=1
   pi=pi*1/(2**6)
   return pi

輸出結果:

使用 Python 計算 π 值

哦,不,我们得到的是同样的精度。好吧,让我们试试第三个公式, Chudnovsky 算法,它看起来是这个样子:

使用 Python 計算 π 值

再一次,让我们看一下这个计算公式(假设我们有一个阶乘公式)。 点击这里可下载用 python 实现的 Chudnovsky 公式。

下面是程序和输出结果:

def chudnovsky(n):
    pi=Decimal(0)
    k=0
    while k < n:
        pi+=(Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))*(13591409+545140134*k)/(640320**(3*k)))
        k+=1
    pi=pi*Decimal(10005).sqrt()/4270934400
    pi=pi**(-1)
    return pi

使用 Python 計算 π 值

所以我们有了什么结论?花哨的算法不会使机器浮点世界达到更高标准。我真的很期待能有一个比我们用求和公式时所能得到的更好的精度。我猜那是过分的要求。如果你真的需要用PI,就只需使用math.pi变量了。然而,作为乐趣和测试你的计算机真的能有多快,你总是可以尝试第一个计算出Pi的百万位或者更多位是几。


陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
如何使用Python查找文本文件的ZIPF分佈如何使用Python查找文本文件的ZIPF分佈Mar 05, 2025 am 09:58 AM

本教程演示如何使用Python處理Zipf定律這一統計概念,並展示Python在處理該定律時讀取和排序大型文本文件的效率。 您可能想知道Zipf分佈這個術語是什麼意思。要理解這個術語,我們首先需要定義Zipf定律。別擔心,我會盡量簡化說明。 Zipf定律 Zipf定律簡單來說就是:在一個大型自然語言語料庫中,最頻繁出現的詞的出現頻率大約是第二頻繁詞的兩倍,是第三頻繁詞的三倍,是第四頻繁詞的四倍,以此類推。 讓我們來看一個例子。如果您查看美國英語的Brown語料庫,您會注意到最頻繁出現的詞是“th

我如何使用美麗的湯來解析HTML?我如何使用美麗的湯來解析HTML?Mar 10, 2025 pm 06:54 PM

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

python中的圖像過濾python中的圖像過濾Mar 03, 2025 am 09:44 AM

處理嘈雜的圖像是一個常見的問題,尤其是手機或低分辨率攝像頭照片。 本教程使用OpenCV探索Python中的圖像過濾技術來解決此問題。 圖像過濾:功能強大的工具圖像過濾器

如何使用Python使用PDF文檔如何使用Python使用PDF文檔Mar 02, 2025 am 09:54 AM

PDF 文件因其跨平台兼容性而廣受歡迎,內容和佈局在不同操作系統、閱讀設備和軟件上保持一致。然而,與 Python 處理純文本文件不同,PDF 文件是二進製文件,結構更複雜,包含字體、顏色和圖像等元素。 幸運的是,借助 Python 的外部模塊,處理 PDF 文件並非難事。本文將使用 PyPDF2 模塊演示如何打開 PDF 文件、打印頁面和提取文本。關於 PDF 文件的創建和編輯,請參考我的另一篇教程。 準備工作 核心在於使用外部模塊 PyPDF2。首先,使用 pip 安裝它: pip 是 P

如何在django應用程序中使用redis緩存如何在django應用程序中使用redis緩存Mar 02, 2025 am 10:10 AM

本教程演示瞭如何利用Redis緩存以提高Python應用程序的性能,特別是在Django框架內。 我們將介紹REDIS安裝,Django配置和性能比較,以突出顯示BENE

如何使用TensorFlow或Pytorch進行深度學習?如何使用TensorFlow或Pytorch進行深度學習?Mar 10, 2025 pm 06:52 PM

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

如何在Python中實現自己的數據結構如何在Python中實現自己的數據結構Mar 03, 2025 am 09:28 AM

本教程演示了在Python 3中創建自定義管道數據結構,利用類和操作員超載以增強功能。 管道的靈活性在於它能夠將一系列函數應用於數據集的能力,GE

Python中的平行和並發編程簡介Python中的平行和並發編程簡介Mar 03, 2025 am 10:32 AM

Python是數據科學和處理的最愛,為高性能計算提供了豐富的生態系統。但是,Python中的並行編程提出了獨特的挑戰。本教程探討了這些挑戰,重點是全球解釋

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
2 週前By尊渡假赌尊渡假赌尊渡假赌
倉庫:如何復興隊友
4 週前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒險:如何獲得巨型種子
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具